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SLIP LINE METHOD FOR SINTERED
POWDER MATERIALS UNDER CONDITION
OF AXIAL SYMMETRY DEFORMATIONY

Zhao, Zhongzhi Hua, Lin
Wuhan Institute of Tectmology, Wuhan 130070, China

ABSTRACT

Slip line method for sintered powder materials under condition of axial symmeiry is proposed based on
the simplified yield condition of sintered powder materials and Haar-von Karman perfect plastic criterion.
The equations of slip line and stress along slip line are derived, and numerical solutions are given. Defaorma-
tion load in closed die upsetting of sintered copper cylinder is calculated by slip line method, and theoretical
solutions are compared with experimental results.
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1 INTRODUCTION der materials is needed for practice. Slip line

theory!®-®! for fully dense metal and soil in
Plastic working is an important technol-

ogy in production of high performance parts
of sintered powder materiais. In the plastic
deformation of sintered powder materials,

not only the form of the preform is changed
but also the volume of the preform is
changed greatly, therefore the classical plas-
ticity theory based on the volume constancy

can not be applied to analyse the deformation

of sintered powder materials directly. The re-
search of plasticity theory for sintered pow-
der materials has been made since 1970' in The yield conditionl: 271 of sintered
order to guide the technological design of its . .

_ ) ] ) powder materials is

plastic \[Al/igkmg 1.n the?ry? and 1m;.)ortrfmt 3J, + (a0, )? — ¥° ()
progress on yield criterion and slip line
theory in plane strain and so on. has been
achieved. In the plastic working of sintered
powder materials, e.g. extrusion, die forg-
ing etc of rotated body parts is a problem of
axial symmetry deformation, the research of of preform and ¢ =3+ 1—p?/2+p?;

axial symmetry deformation for sintered pow- Y —equivalent yield strength of the

axial symmetry has been developed, the sin-
tered powder materials are materials between
fully dense metals and soils and similar to
these two kinds of materials in deformation
characteristics. Therefore the slip line
method for sintered powder materials in axi-
al symmetry is worthy of research.

2 SIMPLIFICATION OF YIELD CONDI-
TION

where J, —the second invariant of devia-
tor stress tensor;

o »n—hydrostatic pressure;

a —coefficient related to relative density
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sintered powder material
In the coordinates of principal stress
(01. 02, 03), the geometrical form of yield
condition of expression (1) can be shown as
an elliptic sphere. The characteristic lines
from the differential equtions of equilibrum
of stress in accordance with yield condition
of expression (1) are not always of two
groups of real solutions. In order to easily ap-
erate in mathematics, the hexagonal pyra-
mid™*! in the elliptic sphere is used to express
the yield surface of sintered powder materi-
als approximately, then the simplified yield
condition™®: > of sintered powder materials the basic equations in each plastic stress state
corresponding to the hexagonal pyramid is  paceq on the Tresca yield condition, and
shown as follows pointed out that assuming o, equals one of
e T G s + Tmn) SN0 = Voostlyon S 01 ) the other principal stress is correct, this hy-
Omaz = Ouin & (Oriar & Omn) SING = ¥ costl,0, > 0
pothesis is the Haar-von Karman perfect plas-

where  Omaxs Omin— the maximum and the
minimum principal stresses in algebraic value  tC criterion. If the order of the principal

respectively ; #-—function of coefficient a, #
=1g~ ' (a/2). then o =01y Omn=03, the Haar —von Kar-

man perfect plastic criterion can be expressed

Fig. 1| The yield surface of sintered
powder materials

stresses in algebraic value is o, == 0, = 05,

The geometrical forms of yield condi-
tion of expression (1) and simplified yield as follows

condition of expression (2) are shown as Op = Oz = 04 (2)
Fig. 1. If the relative density of sintered Of 0y, = 02 = (3

powder material p=1, i.e. the sintered pow- In the research of limit load of the cylin-
der material is changed into fully dense mate-  drical foundation in the soil mechanics,
rial, then =0, =0, expressions( 1) and Bepesanuent® obtained practical result based
(2) are changed into Mises yield condition on the perfect plastic criterion. Therefore,
and Tresca yield condition of fully dense met- Haar-von Karman perfect plastic criterion
al respectively, this indicates that the yield can be applied to sintered powder materials
condition of fully dense material is only a which are between fully dense metals and
special case of sintered powder material. soils in axial symmetry.

3 Haar-von Karman PERFECT PLASTIC 4 SLIP LINE METHOD

CRITERION
4.1 Concept of Slip Line

In cylindrical coordinates (r. ¢, 2),

the non-zero stresses in axial symmetry are Generally, in plastic working of the sin-
O,y Ogs 0.y T.., they are functions of (r, tered powder mterials there is 0,< 0, so the
z). For 7,,—=7,.=0, 0, is a principal stress. deformation related to v, <70 is discussed.

For the fully dense material in axial symme Take 0= (Opar + 0min ) /2= (o, +03) /2

‘try deformation Shield'™ analysed in detail and substitute it into expression (2), we
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have

on<< 0, 0, — o, — 2asind = Y cosé

(4)

In the coordinates of ( o, 7 ), the geo-
metrical curve of yield condition of expres-
sion (4) is shown as Fig. 2. In Fig. 2 the
stresses at one point in plane( r, z ) repre-
sented on Mohrt' s circle O, are in accord with
yield condition (4). The points A, B on
Moht' s circle indicate two yield planes corre-
sponding to the stress state, the tangential di-
rections of these yield planes are along a, 3
expressed in Mohr’ s circle O, in Fig. 2. If
sintered powder material is in plastic state,
the directions of «, 3 in (7, z ) plane can
be determined by vield condition and Mohr’ s
stress circle, then we can construct two
groups of curves field those are intersected
on a plane of which the tangential direction
of each point is in accord with the tangential
direction of yield plane of the point in plane(
ry =z ), this curves field is slip line field.
From Fig. 2, stipulate the lines rotated (m/4
—#/2) from the maximum stress o, clock-
wise and counterclockwise are slip line o and
3 respectively.

A B o~
0 ~
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N ] (72
2] 3] 2w 0
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[
o' B

T

Fig. 2 Yield condition and Mohr’s stress circle
4.2 Bquatwns of Slip Line and Stress Along i

(Do,=o0,=0,

In this case o, is the maximum principal
stress. In order to operate easily , take I] =
Y/2ctgh, o/ = H + 1/2(o, 4 03) and sub-
stitute them into expression (2), and from
Fig. 2 we have
g, = g’ (1 4+ sinf cos2w) — Hl

og. = ' (1 — sinf cos2w) — H
. : (5)
.. = o' sind cos2w J
6, =0, = o' (1 +sin8) — I
where « is the angle rotating from coordi-

nate r to the maximum stress o, and take the
angle of counter-clockwise as positive.
If we neglect volume stress. the differ-

ential equations of equilibrumt® are
oz, G,- g, —
Rl
9T a’; T (6)
7o ( - T
vy |
T O T

Substitute expression (5) into(6) have
i/ i
(1 <+ sin? cos2w) % - sinf sin2w :%
, . W . 19}
— 2¢' sinfisin20 — —+ 2’ sinf) cos2w —
or az

o' sinf(— 1 + coslw)
r

ag’ n

. L, ) au’
sin# sin2w + (] — sinfl cos2w) —
2z

. aw . , 3w
+ 20’ sinffcos2w — + 20’ sinésin2w —
ar az

o' sin# sin2w

T

The characteristic equations from ex-

pression (7 ) are as follows.
d: = tg(w — wy)dr
| o+ %Y ctgd
P ( - - 0
d( 5 ctgiln e @) (8a)
sin{w — wy) + sin(w 4+ wy)
= dr
2r cos(w — wy)
dz = tglw + wy)dr
| 0+ i)v ctgl
d(-, ctgfitn — p + w) (8b)
P (401

_ sin(w — wo) + sin(w + wu)d
o 27 cosf{w + wy) g

wy=n/4-—8/2 and o, is a stress con-

where
stant.
From Fig. 3, we can obtain the differ-
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ential equations of slip lines from their difini-
tion as follows.

slip line @, dz = tg(w — wy)dr

slip line f; dz = tg(w + wy)dr
Comparing slip line equations (9) to charac-
teristic line equations in the first expression
of equations (8a) and (8b), we know the
slip lines are the same as characteristic lines.
If characteristic line field, i. e. slip line field
is constructed, then the stress distribution in
plastic zone of plane (r, z) can be deter-
mined from the characteristic equations.

(9)

(2Yo,=0c:=03

In this case o, is the minimum principal
stress. According to the above method, we
have characteristic equations as follows.

Fig. 3 Slip line and the maximum stress

dz=1tg(w— we)dr
o+ iY oty
d(L tg ol <.___2____4 ) -
5 ctgfin - w (10a)
sin{w — wp) — sin(e -+ wyg)
= dr
27 cos{w — wg)
dz = tglw + wg)dr
) o+ %Y cgd
d(= ctghln - + w (10b)
Z (2]
o sin{w — wp) — sin(w + wD)dT
- 2r coslw + wo)

5 NUMERICAL SOLUTIONS OF CHAR-
ACTERISTIC EQUATIONS

The analytic solutions of equations(8),

Aug. 1993

(10) can not be obtained generally, then the

numerical method (finite difference method

is used in the paper) must be applied to solve

them. See Fig. 4, take ¢, j as the numbers

of a, fand substitute finite difference for dif-
ferential of equations(8), (10), we have

(] )(T(p:U:—__Ul
o,y — 1wl — 13- wo) — [t — 1,41
(1,0} = { ;
xotglolr — To) 4 wod -5 2l — 174 2 — 1,5]
+ {tglofiiy — 1] — w0) — tglw[t — 1,5] + wo) }
<oy 21 ==l 3— 17+ <l 4]
—2l1, y— IDtelwre ) — 1] — wo)

w1, )] = %(Fz — Fi 4+ o[ty y— 1]+ ot — 1, 5]
I %—clgr‘/+ alt — 1. 4]

+Tctgfiln )
- ——ctgt + o2, 3 - 1]

2
of1, 4] = (of2, ) — 17+ }7 ctgd) exp(2 1gd X

XL+ oft, )] = wfi. g — 1) — %clg(i

(11a)
where
Fo— smwli, j— 1] 4+ @) + smlawli, } — 1] — wo)
L 2efic j— 1]eosColi. g — 1] — wo)
W (eliy 3] - o1 31D )
F‘ o .wn(\_-.;[i -1, j] + wo) + sm(m[i -1, J] — wo)
2= 2r[1— 1, 1] costwli — by 1] + wo
~ telin ] — (104D
(11b)

(2) 0, = 02 = 03

The finite difference solutions in this
case are the same as expression(1la), but
the F, and F, of expression (11a) must be
changed into /', and ¥', respectively, the
expressions of ¥, and /7 are as follows

Fig. 4 General slip line field

sinCof2. ; — 1] - wy) — sindw[z. ) — 1] + o)
2r{1, y — 1costolr, j — 1] — wp

W ol gl — . 1D

Fi =

ﬁ,.7Sl'n(u)|:l—].j]‘wD)*Sin(w[l* 1, 7]+ wo (12)
£ 2r[e — 1, jleosCale — 1, 7] - wo)
>otrfes 41— ele— b D
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In order to improve the precision of fi-
nite difference solutions, the initial numeri-
cal solutions must be revised two or three

times in ihe calculation as follows.
Sl 5 — 13 = 8 jI+ 80 j— 12

For expression (13), substitute 7, =z,
w, o for S respectively in finite difference
calculation.

6 SLIP LINE SOLUTION FOR CLOSED
DIE UPSETTING OF SINTERED COP-
PER

6.1 Theoretical Calculatum

Closed die upsetting is shown as Fig. 5,
and in deformation there is o, =0, =0,
Because of symmetry, it is enough to anal-
yse the deformation of a quarter zone of pre-
form. Consider two boundary conditions,
i. e. no friction and there is a maximum fric-
tion applied on the contact surfaces of the
punch and the preform, respectively, then
the models of their slip line fields are shown
as Fig. 5(a) and (b) respectively. Each
zone of the slip line model represents one of
three boundary problems. The computation
programs for constructing slip line field are
based on the characteristics of each boundary
problem, therefore, we can construct slip
line field from free boundary AB, and deter-
mine stress distribution in plastic zone, fur-
thermore the punch load can be calculated
from the stress distribution in plastic zone.
The equivalent yield strength Y of sintered
powder material is needed in theoretcal calcu-
lation, so the uniaxial compression of cylin-
der specimen made from sintered powder ma-
terial has been made to determine the equiva-
lent yield strength Y. In uniaxial compres-
sion of cylinder there are o,=0,=0,=0, 0,
=03 = —0;, Substitute them into expression
(4) and rearrange, then

S R )
1—(1—{—4—*'2)0.»-

i, Is yield strength of sintered pow-

(14)

where

der material in uniaxial compression. For sin-

tered copper, its ¢t™) can be expressed as fol-
P L-p ye

po N 1=p7 [ (15)
A =— 196. 8] -+ 656. 69/JU(MPa)}
n=0.9031—0.617 1p

o Is initialy relative density of the

lows.

o, = A(ln

where
sintered copper preform.

Slip line field of the closed die upsetting
and compressive stress distribution on punch
end calculated based on the slip line theory
are show in Fig. 6 and Fig. 7 respectively.

6. 2 Experimental Results

Experiments of closed die upsetting with
sintered copper cylinder have been carried
out to verify the theoretical calculation of
slip line method. Cylindrical specimens were
made from elctrolytic powder copper (purity
of Cu>>99. 8wt. - %) by a process of blend-
ing, compacting and sintering. The sintering
atmosphere was cracked ammonium, the sin-
tering temperature was 920+10 (C, the sin-
tering time was 2 h. the test of closed die up-
setting was conducted on a WI—60 type ma-
terial test machine at room temperature. In
order to minimize the friction of the contact
surface between the specimen and the die,
and simulate frictionless boundary condi-
tion, the contact surfaces of both the spec-
imin and the die were ground and polished
and smeared with a lubricating zinc stearate
—alcohol paste. In order to increase the fric-
tion on the contact surface between specimen
and punch and simulate the maximum fric-
tion boundary condition, the punch end con-
tacted with the specimen was machined into
rough surface and smeared with a powder
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Fig. 5 Closed die upsetting and model of its slip line field
(a)—No friction on the contact surface between punch and peform;
{b)—The maximum friction on the contact surface between punch and preform

Fig. 6 Slip line field of closed die upsetting
(a)-—No friction on contact surface be-
tween punch and preform; (b)—The maxi-
mum friction on contact surface between
punch and preform

Fig. 7
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Stress distribution on punch end

1—No friction on contact surface between
punch and preform;

2—The maximum f{riction on contact sur-
face between punch and preform

The initial data of specimens are

shown in Table 1.
The experimental and theoretical aver-

age punch Stresses are shown in Table 2.

From Table 2, we know that theoretical av-
erage punch Siress is 209, or so lower than
that of experiment with frictionless boundary

condition, theoretical average punch stress is
41Y%7 and so higher than that of experiment
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with maximum friction boundary, and this
precision is admissible for technological de-
sign. In fact, the friction between punch
and specimen can not be eliminated in test,
so the experimental average punch stress is
much higher than the theoretical value in the
frictionless boundary condition. Because the
maximum friction condition is in accord with
practical testing condition, theoretical aver-
age punch stress is near to experimental val-
ue in the maximum friction boundary condi-
tion.

Table 1 Initial data of specimens for
closed die upsetting

. diameter height relative

No  welght/g /mm /mm density *

I [61.8 26. 64 37.72 0. 8508

2 209. 1 29.23 10. 84 0. 8587

* Let the density of fully dense material be equal to I.

Table 2 Theoretical and experimental
average punch stress of closed die upsetting

. - g —ap
boundary  relative density IT [/ Tor
E
condition after upsetting /Mpa /Mpa v
0
1 [ricticnless 0. 9762 511 642 —20.41
maximum
. 0.9734 718 693 3.6
friction

Notation . o;, or are theoretical and experimental
avevage punch pressures of closed die upsetting.

7 CONCLUSIONS

( 1)Slip line method for sintered powder

materials in axial symmetry is developed,
equations (8) and (10) of slip line and
stress along slip line are derived, and their fi-
nite difference solutions(11) are given;

( 2)Slip line method for sintered powder
materials in axial symmetry is applied to
analyse closed die upsetting of sintered cop-
per cylinder,
stress is in accordence with experimental val-

theoretical average punch

ue;

(3)Slip line method for sintered powder
materials in axial symmety can be extended
to analyse axial symmetry deformation of
general compressible materials.
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