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ABSTRACT

A graphical mecthod [or determining the principal stress distribution ofé Iriaxial stress statc from a fault slip

stalec was proposed by Alcksandrowski in 1985, bascd on Arthaud’s concept of planc movement, Alck-

sandrowski’s method, however, is only valid for the cases in which the valucs ol the stress ratios(C) are consid-

ered to beoo, 10,2, 1. 1 and 1. Whether the method is applicable for gencral cases of all values of € has not yet

been conlirmed. In this paper. Alcksandrowskis’ mcthod is tested using a numcrical derivation from spatial

geometric analysis, and it is revealed that this method is correct for all valucs of stress ratios other than C=o0,

10,2,1.1,and 1, i. c—ool C< o0,
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1 INTRODUCTION

In structural geology, the dynamic analysis
of a lault system is bascd on Anderson’s mo-
dcl(1942). According to his analysis, there is a
conjugale scl ol fault plancs inclined 45 degrees
to the dircction of maximum compression slress
and containing the dircction of the intermediale
onc. For [rictional materials, the two plancs are
inclined at acute angles to the direction of maxi-
mum compression siress, and the [ault slip vee-
lors arc always perpendicular to that of the in-
lermediatec onc. However, in many cascs, {aults
often show oblique slip and arc usually unable 1o
scparate into different conjugale scts as ac-
counted by Anderson’s model. Bott(1959) pro-
poscd a dynamic mcthod which assumecs that
faults slip in the dircction ol resolved shearing
stress on the [ault planc. Based on his classic
work, considerable clforts have been dirceted
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toward formulating both an inverse method of
determining a reduced stress tensor (Etchecoper
et al. 1981, Angcliger 1984, Gephart and For-
rsyth 1984, Rcches 1987) and graphical u;ch-
niques (Arthaud 1969, Reches 1983, Alcksan-
drowski 1985, Krantlz 1988) lor dclcrmining the
dircctions ol principal stresses. In this paper,
Alcksandrowski’s method is discussed and tested
thcorctically by numecrical derivation [rom spa-
tial gcometric analysis.

2 BRIEF REVIEW

Arthaud (1969) proposcd a graphical mcth-
od [or determuaing the oricntations ol principal
stresses based on the analysis of movement
planes which arc delined as the plancs containing
the normals to the [ault plancs and the direction
of slickenside lincations. Carcy (1976) suggested
that thec mecthod can only bc applied to the
slickenside lincation populations that originated
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in radial stress [iclds, Alcksandrowskr (1985)
computed the directions ol maximum shcaring
stress on fault plancs lor several tens of vanably
oricnted [qult plancs and for sceveral different

principal stress ratios according to the [ormula
derived by Bott (1959):
6.—a
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0-2 o O-f
and C=——"—" (2)
g,—0,
where @ is the pilch of tThe maximum shearing

stress: £, i and # are the direction cesines of the
it normal to a (ault planc; a,, o, and g, the
principal slresscs.

Allcr ploting the traces of the poles 10 the
movement plancs on a stercogram, Alcksandrowski
lound that only lor the cases of C=o20 and C=1,
do the M—plancs intersect at onc point, and this
conclusion conforms with Arthaud’s method, In
alther words, Arthaud’s method can only be applied

- in the radial stress [icld corresponding to cases ol

extreme states of stress, 1. ¢. C=1and C=o20. For
C=1.1, 2 and 10, thc movement plancs which in-
lerseel at one point CTP correspond only Lo the
cascs that the poles o [aull plancs should lic in a
great circle containing the dircetion of one principal
stress. (Fig.1) Alcksandrowski extended these spe-
dal cases 10 general oncs (1< C<o0) and con-
cluded that il (a) a group of the normals to [ault
plancs is arranged along a greal circle, and (b) this
great circle contains the dirccnion of a principal
stress @, then the movement planes of these faults
interseet at a point which lics in another great cirele
perpendicular 1o the principal stress o, His theory 18
bascd only on a few cxamples and graphical opera-
tions, but whether the method can be extended 1o
general cases has not yet been tested.

Thercfore in the following discussion we pres-
ent the theorctical derivation to test whether
Alcksandrowski’s method could be applicable for
all C valucs (that is, ~eo<{ (<(=c) olher than C=
00,10,2,1.1and 1.

3 THEORETICAL DERIVATION

For simplification, two assumptlions arc madc:
(1) the x and y axes ol the coordinate sysiem arc
horizonlal, and the z axis 15 vertical and (2) 0,=a,,
0,=0; o,=a; (Fig. 2), whie C={g-03)/
{(6y—a3), where —eo < ("<o<. Thus, cqualions for
the fault plancs can be represented as

Fig.l  Movewment plane patterns for € =2 drawn
separately for groups of the normals(dots) to rclated
fault planes arranged along a great circle(dashed line)
containing . (after Aleksandrowski).

[ x+m y+ H)Z—‘:O
sz +om,y o,z = 0
creressacerenanne )
lrx +m ytnz= 0
I x+m y+ nz=90
where [, m, and n, (1=1-++,+--, r) arc dircclion
cosines of unit normal N, 1o the -th [ault

Assuming that a planc £ is parallel to the =z
axis(eg,), the unit normal to the P is delined as

F={a,b,ci=1a,b, o} (4)

where a4, b and ¢ are the direction cosines of F
Thus the cquation lor £ can be cxpressed as

ax+by=10 (5)

Il the normals to the (ault planc represcnted
in Eq. (3) 1s distributed on P, it [ollows that

{L,m,n}{a b o}=0 (6)
or Latmb=10 (N

where  the lefti=hand side of Eq.(6) is the scalar
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product of N, and F. According to Jacger and
Cook(1979), the slip vector on a fault plancis
S = U [mAo—a)—n{a—a,)],
m [n{oy—a)—1(6,—a )],
”:[f:(ff1_53)_’”3(53—02)]} (®)
Sincc cach M-—planc contains both the
normal 1o the [ault planc and the slickenside
lincation on the {ault plane, the unit normal {o

cach M—plancis

Z(a))

/|

¥(,)

X(ay)

Fig. 2

movement plane (M) with respect to the coordinate sys-

The orientations of the fault (F) and

tem of principal stress axes. The normal to the fault and

slip direction on it are marked & and S respectively

M.= § XN, 9)
or
i J K
! m n

:m[n{(o‘z—o‘l)z'Jrnll‘(a3—a])j
+1‘m’(gl—-o‘2)k

_ T _ _
4“”{”1(0—2 O’J),Hllf(()'] (71)’

[ m (g —02)} (10)

where 4, jand & arc the unit veetor of x, yand z
respectively and s, 8, and sy arc components ol
S, _

From cquation 10 wc can scc that if
g,=a,(C=1), all the A—plancs pass through z
axis, and i g,= a,(C =+ oo ), all the A —plancs

pass through the x axis. The patlerns of

M—plancs show good agrcement with the ar
rangements raised by Carcy (1976) as to the
applicability ol Arthaud’s method.

From Eq. (7), we get

! b

SR 1
m, a (n

Substituting Eq. (11) into Eq. (10) and
rearranging it yiclds

={mpnle,—0cy), —(b/ a)ymnlc—a)
—(b / a)m(o—0,)} (12)
We know if somc plancs interscel on a ling,
thc normals 1o the plancs are nccessarily perpen-
dicular to the linc and vice versa. From Eq. (12),
wc can casily [ind that Af 1s pcrpendicular to

veelor
g —a
L= "5y 10 (13)
a ()-2 —63

Thus all the M—plancs intersecl on a linc .
We should note that the vector L is perpendicu-
lar to z axis , so lhc interscction is parallel 1o the
x—y planc.

The above analysis indicates that Alcksan-
drowski’s conclusions arc obviously appropriate
for —oo< (< oc. However, we usually [irst plot
the traces ol M —plancs on stercogram then inler
the dircctions ol principal stresses. A question
ariscs as Lo, if a group ol AM—plancs intersect at a
point, whether the conditions, (a) and (b) men-
tioned above, arc necessarily satisficd. Tn order to
solve the problem, we assumc that the three
movement planes intersect at a pomt. From Eq.
(12), we get _

’"1”1(62 — o‘])x +n 0 (7, — al)y +
11’"1(01 — 0'2)3 =0

mnfo,—a )x+nl (o, —a)y+

> (14)
121112(01 — crz)z =90
mon (o, —g )X +nl (o, —a )y +
13"13(0‘1—0'2)Z=0 L

In order 10 oblain non—zcro solutions lor x,
yand z, the determination must [ollows
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mlnl(al—ol) n i (v, —a)) {im (o, ~0,)

mznz(”z - al) nzlz(az #01) 12'"2(61 - Jz)

'”1"1(("1_”1) rrjfj(rr] —a,) 1'Jm_,(z7| ~r71)

(15)

mon, "1/1 11’”1

or mn, nzl’2

.’zm2 =0 (16)

¥
mon, 11313 13713

Assuming Im0 (1=1,2and?3) an
yiclds
n /i n /m o1
n, /0 n /m  11=0 (18)
n, /A m S my 1
or

(= nypn,—nmiyny) / lma—(nygn,—npm,) X
(hny—nyy) / Iim =0 (19)
Tt is obvious, if thrcc A7 —plancs inlcrscel at
a line, then the direction cosines of the normals
lo the related laults must follow Eq. (19). We
should note, however, that the normals do not
neeessartly lic on a planc . In contrast, il the
normals arc localed on a planc , then they must

obey the determinant

[ m n

1 1 1
[, m, n, |=0 (20)
1] m,oon,
Assuming
n70(t=1,2and 3), 2n
we have

"1/"1 ”11/”1 i
12/;12 m, / n, 1]=0 (22)
1]/)1] )113/}13 1

or  (/m—1n){nypy—myn,)—

(myn —nymy)(ny—nyly) =0 (23)
Substituting Eq.(23) into ¢q.(19) yiclds
limy=iyn,, (24)

or I/ m=1/m, (25)

Changing the positions ol the rows i the
determinants of Eq.{15) and Eq.(20), we get

I/ m=1/m, (26)
or L/ m=5L/my=10/m, 27

Eq. (27) resembles Eq. (11), which shows
that the planc containing the normals passcs
through the z axis.

The forcgoing analysis indicates that mo-
vemenl plancs intersecting on a line can not guaran-
tee that the normals to the related lault planes he in
a single planc (Fig. 3). But , il thc normals to the re-
laled fauits do lic in a plane, then the plane must
contain the dircction of principlal stress ¢, and the
intersecting line ol Af—plancs must be parallel Lo
another planc perpendicular to the ¢ accordingly, in
analysing a CIP, we must check whether three or
morc normals to the faults related to the M—planc
lic n a great circle on a stercogram. If not, we can-
nol inlcr a principal stress [Tomit,

Fig. 3 The normals {dots) to fault planes do not lie
in a great circle, although the related M—planes inter-

sect at one line (C'=2, after Aleksandrowki).

4 DISCUSSION AND CONCLUSIONS

Although the numerical derivation is based
on the assumpuion that g principal stress is verti-
cal, the results are still correct [or the rotating
principal stresses, because the rotation ol princi-
pal stresses will not change the inherent relation-
ships between the faull plancs, shckenside and
principal slrcsscs.

Wec¢ have proved that Alcksandrowski’s
mcthod, which supplements Arthaud’s method
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of analyzing thc movement plancs, is universally
correct, and wc have given Alcksandrowski’s
mecthod theoretical support. Alcksandrowski’s
mcthod is appropriate {or both the gencral stress
state (—ee < C<{o0) and mcchanically heteroge-
ncous mcdia which contains prc—cexisting plancs,
such as joints, older faults or bedding surfaces.

However, the graphical mcthod, as Alck-
sandrowski has pointed out, is timc cosuming.
This may be overcomce by a compuler program
in preparation by mcans of the quantitative rep-
resentations of both the plancs and lines, which
we present in this paper .
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