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Table 1 First-principles calculations and experimental data of Mo, Si and D8,-MosSi;
Calculation Experiment
Element Ground state energy/ Lattice constant/ Bulk modulus/ Lattice constant/ Bulk modulus/
(eV-atom ") A GPa A GPa
=3.147%1 2671
Mo —10.9449 a=3.1497 267.01 aa:3 13142 262,844
. =5.43091*") 96.31461
Si ~5.4326 a=5.4689 88.55 e Lo
=9.648, c=4.9031*
MosSis —74.2535 a=9.6808, c=4.9033 247.08 a=9.648, c=4.9 242148.30]

a=9.59, ¢=4.87%
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Fig. 4 Mo vacancy-induced charge density of D8 ;-MosSi3: (a) Vot (b) Vo2
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Table 2 Calculated formation enthalpy of vacancies and
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Vol 0.381 0.0627
Vo2 0.381 0.0386
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Mo, 0.3594 0.0843
Mosg;, 0.3594 0.1221
Sinol 0.3906 0.0543
Sime2 0.3906 0.0310
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Bonding characteristics and point defect behaviors of
D8,,-MosSi; based on first-principles

GU Shun', WANG Bin', SUN Shun-ping', LI Xiao-ping', JJANG Yong?, YI Dan-qing’

(1. Jiangsu Key Laboratory of Advanced Materials Design and Additive Manufacturing,
Jiangsu University of Technology, Changzhou 213001, China;
2. School of Materials Science and Engineering, Central South University, Changsha 410083, China)

Abstract: The formation energies, point defect concentrations and electronic structures of point defects for D8,-MosSis
were calculated by the first-principles pseudopotential plane-wave method. Furthermore, the effect of bonding behaviors
and structural stability were investigated emphatically. The results show that lattice constants of MosSi; are 9.6808 A and
4.9033 A, and the bulk modulus is 247.08 GPa. The Mo vacancy-induced charge density shows the spindle-like bonding
characteristic, and the localized hybridization focuses on Mo 4d state and Si 3p state. From the formation energies, Mog;;
and Siy,; are the most stable defect structures in Mo-rich and Si-rich alloys, respectively. It is because the larger charge
accumulation between Mo and Si strengthens the interaction for Mog;; and Siy,, anti-site defects. Combining with
Wagner-Schottky model, the point defect concentrations at 2173 K as a function of composition were also investigated,
and the results show that Mog;; and Siy,, are the main defect forms of Mo-rich and Si-rich alloys, respectively.

Key words: D8, -MosSis; point defect; bonding characteristic; structural stability; first-principles calculation
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