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ABSTRACT

Based on the imaging formulas that reported by the authors, the characterization of velocity

singularity has been studied across the wavelet scale. Furthermore, the imaging method can sup-

press the noise in the observed data. Finally, the examples are given.
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1 INTRODUCTION

This paper is the second part of the study on
the imaging of reflector in the earth with wavelet
transform, of which the first part has been report-
ed in the last issue of the Transactions of NFsoc, i.
e. Ref[1]. Based on the imaging formulas in Ref.
[1], the authors obtained some results as follows.

2 CHARACTERIZATION OF VELOCITY
SINGULARITY

To map more precisely the location of the re-
flector surface, it is useful to analyze the velocity
singularity, for the band- limited input data. In
mathematics, singularities are generally character-
ized by their lipschitz exponents.

Definition 1. Let 0<C ¢ <(1, a function f(z)
is lipschitz y at z, if and only if there exists a con-
stant k such that for all z in a neighborhood of z,,
we have

|f(x) — fla) | < hlz — 0] ¢D)

The function f(z) is uniformly lipschitz y over
an open interval ( a, b ) if and only if there exists
a constant k such that inequality (1) holds for any
z, 2o € (a, b).

According to the Definition 1, if f(z) is con-
tinuously differentiable at xo, then it is Lipschitz y
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= 1. If f(x) is discontinuous but bounded at z,,
for example, f(z) is a step function at z,, then its
Lipschitz exponent y = 0.

In two dimensions, Lipschitz exponent are de-
fined with a simple extension of Definition 1. Let
0<Cy<{landzx € R%: A function f(z) is said to be
Lipschitz y at a given point zo € R?, if and only if,
there exists 6 > 0 as well as ¥ > 0 such that for any
T € Uz, 6) = {x|z € R?, |z — x| < 6}

|f(x) — flao) | < ko (2)
If there exists a constant k such that inequality (2)
is satisfied for any points 2, and z within a open set
of R®, the function f(x) is uniformly Lipschita y
over this open set.

The modulus of the wavelet operator at the
scales can be difined by
W) | = V|Wla(x)|* + [Wia(x)|? (3
Based on Eq. (3), the Jaffard’ result in Ref. [ 4]
can be extend as follow. Suppose that the wavelet

¢@(z), j =1, 3, are continuously differentiable
and |(P’(I)| = 0(1 +]|I|2)’ as |I| 00, we
has the following lemma.

Let 0 << vy < 1 and f(z) €
L®(R?). A function f(z) is uniformly Lipschitz y
over an open set A of R*if and only if there exists a
constant B > 0 such that for all x € A, the modulus
of the wavelet operator satisfies

|[W.f(z)| < Bs’ )

Lemma 1.
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The proof of this lemma is a simple extension Eq. (6) implies that the noise in the observed data
of the proof of the Jaffard’s result in Ref. [4]. should infects the function a(z) in Eq. (5) in Ref.
Lemma 1 characterizes uniform Lipschitz exponents [17]. And then, if n(¢) is real wide sense station-
over an open set but not pointwise Lipschitz expo- ary white noise, using the methods provided by
nents. To study isolated singularities, however, ac-  Mallat in Ref. { 3] to calculate the lipschitz expo-
cording to the Mallat’s view in Ref. [3], lemma 1 nent y of n,(z) in Eq. (6), for a few special cases
is sufficient. We shall say that a function has an (for example, for the zero offset constant back-
isolated singularity at z, if there exists a neighbor- ground case), we have known that the Lipschitz ex-
hood U/ (zy, 6) of 2y, where the the worst singulari- ponent y of n,(z) in Eq. (6) is less than zero. That
ty is at zo. In other words, the uniform Lipschitz is to say, there exists a constant B, such that
regularity of the function over U'(z,, d) is equal to [Won, (2) | << Bys” (7
the pointwise Lipschitz regularity at xy. In this equation, y is less than zero.

Based on Egs. (29), (36) in Refs. [ 1] and Therefore, if we apply the wavelet operator W
[4] in lemma 1, we obtain the following theorem. to Eq. (5), we obtain

Theorem 1. For the band-limited input data Woa(z) = Woalzr) + W, (2) &)
u.(zg, ., @), on the surface S in the earth, the Inequality (7) implies that |Wr, (z) | should
Lipschitz exponent y of a(z) is not less than zero. decrease when the scale s increases. On other

particulérly, for the full band input data hand, by Theorm 1 and Lemma 1, the amplitude
u(zyy 2y 0 ), by Egs. (30) and (36) in Ref. of |W.a(z)| should increase or remain constant
[1], and Eq. (4) in lemma 1, we know that the when the scale s incrcase. Hence, we can take the
Lipschitz exponent y of a(z) is equal to zero on the advantage of the spatial coherence of the image of
surface S in the earth. Hence, we have the follow- velocity singular structure to suppress the effects of
ing corollary. the noise in observed data when the scale s in-

Corollary 1. For the full band input data crease.
u(zg, 2., w) the function a(x) is step function
and its discontinuty is on the surface S. 3 EXAMPLE AND CONCLUSIONS

Theorem 1 and Corollary 1 show clearly the
characterization of velocity singularity, respective- For the band-limited inverse problem, the in-
ly for the band- limited and the full band input verse operator S(r), introduced by Bleistein in
data. Using this information about the velocity sin- Ref. [ 2], is a band-limited Delta function on the
gularity,, we can easily suppress the effect of the surface in the earth. On the other hand because the
noise in the real world data. . inversion operator f(z) is a generalization of the

Because there always exists noise in the derivative operator aa(z) /o2, B(x) is highly sensi-
obaserved data, it is important to find the velocity tive to the noise in the real world data. But, the
inversion method which can suppress the noise. method in this paper can suppress the effects of the

First, let us consider the effects of noise in the noise.
data and suppose that u,(z;, z., w ) is affected by Let us consider a single inclined planar reflec-
n(w ) and the observed data becomes u,(z,, 7., w) tor. The angle of inclination will be 30° with re-
+ n(w), here n(w) is the Fourier transform of the spect to a horizontal oz, axis, and the planar reflec-
noise n(¢). Then, the function a(z) in equation tor is papallel to oz, axis, above the plane with
(5) in Ref. [1] correspondingly becomes a(z), speed ¢co =4 500 m/s, and below the plane with
that is speed ¢, =5500m/s. In this paper, the coordinate

a(x) = a(x) + n,(2) (5) system z = (2,, 72, 13) is a right-hand system with
In this equation, x3 being positive in the downward direction into the

0 (z2) = 8—(‘§J‘dk|dk3dgldl earth. The inclined plane is assumed to be at depth

L 2 000 m below the original point(0, 0, 0).

X Li[,l(()eEJfk.U.*:,)*Wﬂ*'w‘ (6) For the theory model, we add the real white
o
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Fig. 1(a)~ (c) Adding real white noise to input data
(a)—A 6~50Hz bandwidth depth section determined by sa/sn
(b)~ (¢)—6~50 Hz bandwidth depth section determined by |W.a(z) |
under scale s taking 2! and 22, respectively.
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