RELATIONSHIP OF LENNARD-JONES POTENTIAL AND

MORSE POTENTIAL WITH $W_x(r)$ POTENTIAL[®]

Xie, Youqing

Departement of Materials Science and Engineering, Central South University of Technology, Changsha 410083

ABSTRACT

It was proved that Lennard-Jones potential can be transferred to $W_r(r)$ potential according to relationship of their parameters established in this paper. The empirical $W_1(r)$ potential has been developed into semi-empirical $W_r(r)$ potential related to electronic structure of crystals. Relationships of parameters between Morse potential and $W_r(r)$ potential have been also obtained, but if Morse potential equals $W_r(r)$ potential, the parameter α_m in Morse potential can not be constant. Comparing it with other two potentials, the $W_r(r)$ potential is the most perfect.

Key words: potential function cohesive energy thermal expansion elastic modulus

1 INTRODUCTION

The study of H_2 molecule ushered in a new way of establishing microtheory of correlating potential energy with electronic structure of atoms in solids. But the microtheory of metals and alloys has made slow progress, because there are a lot of difficulties in description of electronic structure of atoms in solids, design of potential function with the many- atom interaction and solution of Schrodinger's equation due to complexity of many-body problem. For this reason another way has been developed for studying relations between interaction potential energy and properties of atoms in solids using potential function. The well-known potentials are, respectively, Lennard-Jones potential (refered as $W_1(r)$)[1]:

$$W_1(r) = A_1/r_{n_1} - B_1/r_{m_1}$$
 (1)

and Morse potential (refered as $W_{\rm m}(r)$

$$W_{\rm m}(r) = \frac{E_{\rm c}}{n_{\rm m-1}} ({\rm e}^{-n_{\rm m} a_{\rm m}(r-r_0)} - n_{\rm m} {\rm e}^{-a_{\rm m}(r-r_0)}) \qquad (2)$$

where r_0 and r are, respectively, distances of interatoms in crystals at equilibrium and unequilibrium; E_c is cohesive energy of crystals; and all of pa-

rameters, A_1 , B_1 , n_1 , m_1 , n_m and α_m are constants.

Recently, a new potential function with many-atom interactions in solids has been proposed by the author for studying relations of crystalline structure, electronic structure and properties of metals and alloys (referred as $W_x(r)$)^[2]:

$$W_{x}(r) = E_{c} \left[(n_{x} - 1) \left(\frac{r_{0}}{r} \right)^{n_{x} m_{x} / (n_{x} - 1)} - n_{x} \left(\frac{r_{0}}{r} \right)^{m_{x}} \right]$$
(3)

It possesses the following characters: (1) It is established on the basis of many-atom interaction model. (2) In the $W_x(r)$ potential, the variable is the reduced distance or bond length of interatoms, so the form of the $W_x(r)$ potential does not become complex due to considering many- atom interactions. (3) The $W_x(r)$ potential is a semi-empirical equation, because the potential energy and bond length of the crystal in equilibrium state may be calculated from the electronic structure of crystals. (4) The relations of parameters n_x and m_x with microquantities have been established, and only n_x is independent. (5) A series of equations for calculating various elastic moduli have been derived from the $W_x(r)$ potential. (6) It is unnecessary to know

① Project supported by the National Natural Science Foundation of China; Manuscript received June 25, 1993

the bulk modulus for calculating the thermal expansion coefficient as a function of temperature. The purpoes of this paper are establishing relations of $W_1(r)$ and $W_m(r)$ potentials with $W_x(r)$ potential, obtaining transfer equations of their parameters and making the best selection from these potentials in practical applications.

RELATION BETWEEN $W_1(r)$ **AND** $W_{\tau}(r)$ POTENTIALS

It is necessary to establish transfer equations from A_1 , B_1 , n_1 and m_1 parameters in W_1 potential to m_x and n_z parameters in $W_x(r)$ potential in order to study relation between $W_1(r)$ and $W_x(r)$ potentials. For this purpose it is supposed that $W_1(r)$ and $W_r(r)$ potentials have identical characters, namely, the same $W(r) \sim r$ curve for an identical crystal.

It has been proved that only one parameter n_r in $W_r(r)$ potential is a constant awaiting determined and can be obtained according to one experimental value of thermal expansion coefficient. The relation between m_x and n_x parameters has been derived according to the principle of mechanics and Debye's

$$m_z = \frac{2\theta K_B r_0}{h j} \sqrt{m/E_C \cdot (n_z - 1)/n_z} \qquad (4)$$

 $j = \bar{\lambda}/(\lambda_{\rm D}/2) = (\bar{\lambda}/\pi) \cdot (6\pi^2 N/V_0)^{1/3}$ (5) where θ is Debye temperature; K_B , boltzmann's constant; h, Planck's constant; m, atomic mass; λ , average wave length of elastic wave; λ_D , Debye wave length; and j is the multiple of the half Debye wave length.

In order to establish the relationship between $W_1(r)$ and $W_x(r)$, the W_x can be rewritten as

$$W_{x}(r) = E_{c} \left[\frac{(n_{x} - 1)r_{0}^{*}r_{x}^{*/(a_{x}-1)}}{r^{a_{x}n_{x}^{*}/(a_{x}-1)}} - n_{x} \frac{r_{0}^{n_{x}}}{\pi} \right]$$
(6)

Comparing Eq. (1) with Eq. (6), the following equations can be obtained:

$$E_{\rm c} = -A_{\rm l}/r_0^{\rm s} + B_{\rm l}/r_0^{\rm m} \tag{7}$$

$$A_{1} = E_{C}(n_{x} - 1)r_{0}^{n_{x}/(n_{z}-1)}$$
 (8)

$$B_{1} = E_{C}(n_{x} - 1)r_{0}^{s m_{x}/(s_{x}-1)}$$
 (9)

$$n_1 = n_x m_x / (n_x - 1) \tag{10}$$

$$m_1 = m_z \tag{11}$$

some knowledges can be drawn from Eqs. (7) \sim (11):

- (1) The parameters A_1 , B_1 , n_1 and m_1 in $W_1(r)$ potential are functions of $E_{\rm C}$, r_0 , m_z and n_z in $W_z(r)$ potential. The four parameters in the $W_1(r)$ potential are interrelated and interdependent and can not arbitrarily take values, because the cohesive energy $E_{\rm c}$ and the shortest bond length are determined by electronic structure of crystals^[7,8], and parameters m_x and n_x are interrelated and interdependent.
- (2) If the values of parameters in $W_1(r)$ potential are taken from Eqs. (8) \sim (11), the $W_1(r)$ can be changed into $W_z(r)$ potential. It shows that the $W_x(r)$ potential is developed from the $W_1(r)$ potential. The advances of $W_x(r)$ potential are on both that the completely empirical $W_1(r)$ potential has changed into a semi-empirical potential, and the implications of parameters in $W_1(r)$ are very clear, because relationships of these parameters with microquantities have been established.
- (3) Because $W_1(r)$ potential can changes into $W_{z}(r)$ potential we can derive not only theoretical equations of bulk modulus, Young's modulus, shear modulus and Poisson's ratio, but also equation of thermal expansion coefficient[8, 9];

$$a_{\mathsf{T}} = C_r/3Q \lceil 1 - K(U/Q) \rceil^2 \tag{12}$$

where C_{v} is the molar heat capacity at constant volume, U is the energy of lattice vibrations. If the potential function of the crystal is discribed by $W_1(r)$ or $W_z(r)$, the parameters Q and K, and Grüneisen constant y can be calculated by the following equations:

$$Q = V_0 B / \gamma \tag{13}$$

$$K = (m_1 + n_1 + 3)/6 \tag{14}$$

$$y = (n_1 + 2)/6 \tag{15}$$

or
$$Q = \frac{40^{2} K_{0}^{2} r_{0}^{2} m}{9h^{2} j^{2}} / \frac{1}{3} \left(\frac{\theta K_{B} r_{0}}{h j} \right) \times \sqrt{m/E_{C} \cdot n_{x}/(n_{x} - 1)} + 1) \qquad (16)$$

$$K = \frac{\theta K_{\rm B} r_0 (2n_x - 1)}{3hj} \sqrt{\frac{m}{n_x (n_x - 1) E_{\rm C}}} + \frac{1}{2}$$

$$r = \frac{\theta K_{\rm B} r_0}{3hj} \sqrt{m/E_{\rm C} \cdot n_x/(n_x - 1)} + \frac{1}{3}$$
(18)

$$r = \frac{\theta K_{\rm B} r_0}{3h \, i} \, \sqrt{{\rm m}/E_{\rm C} \cdot n_{\rm r}/(n_{\rm r} - 1)} + \frac{1}{3} \tag{18}$$

where V_0 is the volume of one mole of the solid; B is the bulk modulus; other quantities can be known from Eq. (4).

It should be pointed out that it is unnecessary

to know the bulk modulus for calculating the thermal expansion coefficient as a function of temperature, if the potential of the crystal is discribed by $W_x(r)$ potential. The bulk modulus, Young's modulus and shear modulus can be calculated if the parameterss n_x and j have been obtained according to experimental values of thermal expanion coefficients at two temperatures. The high accuracy of results have been confirmed^[3].

3 RELATION BETWEEN $W_m(r)$ AND $W_z(r)$ POTENTIALS

According to the same promise pointed out in the section 2, the relation between $W_m(r)$ and $W_r(r)$ potentials will be discussed in two situations.

- (1) At the situation of $r = r_0$;
- (a) The differences between attractive and repellent potentials in both $W_{\rm m}(r)$ and $W_{\rm r}(r)$ potentials should be equal to negative value of cohesive energy which is determined by electronic structure of crystals:

$$- [n_{x}E_{C}]_{xA} + [(n_{x} - 1)E_{C}]_{xR} =$$

$$- [n_{m}E_{C}/(n_{m} - 1)]_{mA} + [E_{C}/(n_{m} - 1)]_{mR}$$

$$= - E_{C}$$
(19)

It means that the interaction potential function of atoms in the crystal with a certain electronic structure can be described by both $W_{\rm m}(r)$ and $W_{\rm r}(r)$ potentials.

(b) If $n_{\rm m}=n_{\rm r}/(n_{\rm r}-1)$, not only the ratios between attractive and repellent potentials in $W_{\rm m}(r)$ and $W_{\rm r}(r)$ are equal, but also their absolute values are equal. The correctness of this conclusion can be proved in two aspects.

Supposing the ratios between attractive and repellent potentials in $W_m(r)$ and $W_r(r)$ are equal,

$$\frac{\left[-n_{m}E_{C}/(n_{m}-1)\right]_{mR}}{\left[E_{C}/(n_{m}-1)\right]_{mR}} = \frac{\left[-n_{z}E_{C}\right]_{zR}}{\left[(n_{z}-1)E_{CzR}\right]}$$
(20)

From Eq. (20) it can be obtained

$$n_{\rm m} = n_{\rm x}/(n_{\rm x} - 1) \tag{21}$$

Supposing attractive and repellent potentials in $W_{\rm m}(r)$ potential are, respectively, equal to ones in $W_{\rm r}(r)$ potential:

$$-\left[n_{x}E_{C}\right]_{xA} = -\left[\frac{n_{m}E_{C}}{n_{m}-1}\right]_{mA}$$
 (22)

$$\left[(n_x - 1)E_C \right]_{xR} = \left[\frac{E_C}{n_m - 1} \right]_{mA} \tag{23}$$

From both Es. (22) and (23), it can be obtained

$$n_x = n_m/(n_m - 1)$$

From this equation, it can be obtained that

$$n_{\rm m}=n_{\rm r}/(n_{\rm r}-1)$$

so the suppositions above prove to be correct. The analysis above shows that at the $r=r_0$, the coincident condition of potential curves described by $W_{\rm m}(r)$ and $W_{\rm r}(r)$ potentials are dependent on having relation described by Eqs. (21) or (24) between $n_{\rm m}$ and $n_{\rm r}$, and independent on parameters $a_{\rm m}$ and $m_{\rm r}$.

(2) In the situation of $r \neq r_0$

The completely concident conditions of potential curves described by $W_{\rm m}(r)$ and $W_{\rm r}(r)$ potentials are that the parameter $\alpha_{\rm m}$ in $W_{\rm m}(r)$ potential is a variable as a function of distance, r, of interatoms, besides $n_{\rm m}=n_{\rm r}/(n_{\rm r}-1)$. It can be proved following:

The form of potential curves is determined by ratio between attractive and repellent potentials. From $W_m(r)$ potential we can obtain

$$\frac{W_{\mathbf{m}}(r)]_{4}}{[W_{\mathbf{m}}(r)]_{R}} = -n_{m}e^{n_{\mathbf{m}}(1-a_{m})(r-r_{0})}$$
(25)

From $W_r(r)$ potential we can be obtain

$$\frac{W_{m}(r)]_{4}}{[W_{m}(r)]_{R}} = -\frac{n_{x}}{n_{x}-1} \left(\frac{r_{0}}{r}\right)^{(m_{x}-n_{x}m_{y}/(n_{x}-1))}$$
(26)

From Eqs. (25) and (26) it can be known that the condition of having the identical potential curves for $W_m(r)$ and $W_r(r)$ potentials is

$$\begin{cases} n_{m} = n_{r}/(n_{r} - 1) \\ a_{m} = m_{r}(r - r_{0})\ln(r - r_{0})/n_{r} \end{cases}$$
 (27)

Because $(r-r_0)\ln(r-r_0)$ is not constant. the parameter $a_{\rm m}$ can not be constant. If the parameter $a_{\rm m}$ is a constant, $W_{\rm m}(r)$ and $W_{\rm r}(r)$ potentials can not have an identical potential curve.

4 CONCLUSIONS

- (1) The realtionships of parameters A_1 , B_1 , n_1 and m_1 in $W_1(r)$ potential with parameters m_r and n_r in $W_2(r)$ potential have been established, and it shows that A_1 , B_1 , n_1 and m_1 are interrelated and independent constant, and can not arbitrarily take values.
- (2) According to established relationships of parameters in $W_{\tau}(r)$ potential with ones in $W_{\tau}(r)$ potential, the $W_{\tau}(r)$ potential can be changed into $W_{\tau}(r)$ potential, but the $W_{\tau}(r)$ potential has made

great advances: The completely empirical $W_1(r)$ potential related to electronic structure of crystals; The $W_1(r)$ potential with two atoms interaction has been developed into $W_{\tau}(r)$ potential with manyatoms interaction; The relationships of parameters in $W_{\tau}(r)$ potential, various elastic moduli and thermal expansion coefficient as a function of temprature with microquantities have been derived, so the natures of these parameters and properties of crystals have been more clear.

(3) The relationships of parameters n_m and α_m in $W_m(r)$ potential with parameters m_r and n_z in $W_x(r)$ potential have been established:

$$\begin{cases} n_{\rm m} = n_{\rm r}/(n_{\rm r} - 1) \\ \alpha_{\rm m} = m_{\rm r}(r - r_0) \ln(r - r_0)/n_{\rm r} \end{cases}$$

when $W_{\rm m}(r)$ potential is used to study interaction of atoms of crystals, the parameter $a_{\rm m}$ generally is a constant, but $(r-r_0)\ln{(r-r_0)}$ is not constant, so $W_{\rm m}(r)$ and $W_{\rm r}(r)$ potentials can not transfer each other, and can not be able to have identical po-

tential curve.

REFERENCES

- 1 Lennard-Jones, J E. Physica, 1937, (10), 941.
- 2 Milstein, F. J Appl Phys. 1937, (44): 3825.
- 3 Xie, Y Q. Seience in China, Series A, 1993, (1): 90.
- 4 Xie, Y Q et al. Transactions of NFsoc, 1992, (2): 56.
- 5 Xie, Y Q et al. Science in China, series A, 1993, (4): 487.
- 6 Xie, Y Q et al. Science in China, series A, 1993, (4): 495.
- 7 Xie, Y Q; Ma, L Y. Journal of Central-South Institute of Mining and Metallurgy, 1985, (1): 1.
- 8 Xie, Y Q et al. Chinese Science Bulletin, 1992, (16): 1529.
- 9 Gray, E E. American Institute of Physics Handbook. 3rd edition. New York, Toronto, London: McGraw-Hill Book Company, Inc. 1972. 4-119.

(From page 62)

of small amount of La_2O_3 , whereas the La-Mo wires doped with higher content of La_2O_3 show very good toughness at room temperature when annealed at higher temperatures and have excellent thermionic electron emissive capacity.

REFERENCES

- Lee, K S. Journal of the Less-common Metals, 1984,
 99: 215-244.
- 2 Endo, M. In: 12th Inter Plansee Seminal, 1989, 1.

37 - 52.

- 3 Eck, R. In: 12th Inter Plansee Seminal, 1989, 1. 483 -491.
- 4 Zhou, Meiling et al. Materials Science and Engineering of Rare Metals, 1989, (6): 11-15.
- 5 Bachmann, R; Busbau, C; Gessinger G. US 40838111. 1978.
- 6 Zuo, Tieyong et al. J of Central-South Institute of Minging and Metallurgy, 1982, (1): 47-53.
- 7 Herring, C. J Appl Phys, 1950, 21: 437.
- 8 Coble, B L. J Appl Phys, 1963, 34: 1979.
- 9 zhou, M; Cheng, Z; zhang, J; Li, J; Zuo, T. In: 13th Inter Plansee Seminal, 1993, 1: RM70.