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ABSTRACT

With wavelet transform, a new inverse and imaging method is proposed to the seismic in-
verse problem for two and one—half dimensional (2. 5D) velocity variations. Copmaring with
the reflection function method presented by Bleistein et al (1985), proposed method has the advan-
tages of that can be used to analyze and suppress the infection of the limited band width of obser-

vation in frequency.
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1 INTRODUCTION

This paper is motivated by the paper by Bleis-
tein and others (1985, and 1979)°! 2!, The reflec-
tion function method presented by them produces
the pseudo-image about the reflector in the earth
when the observed data are limited in frequence do-
main. So, it is necessary to find new inverse opera-
tor, which can analyze and suppress the effect of
the limited band width of the observation in fre-
quency.

First, we introduce a right-handed coordinate
system x= (x;, x;, x3) with x; being positive in
the downward direction into the earth. The ob-
served field is the backscatter response from acous-
tic point source set off at every point & = (&, &,
0), on the surface of the earth. We assume that
the total field u(z, &, w ) is the solution of three di-
mensional Helmhotz equation, with point source at

- (él, §29 O):
Viu(z, &, o) + %u(r, &y w) =
— oz, — Cl)d(lz - éz)é(ls) 1

with the sommerfeld radiation conditions

ru bounded, 7[3 — Z?-C—_ou 1—=0,asr—>o0 (2)
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whére 7 = |1], r = r(2) is the wavespeed we
seek.

The wavespeed is represented as a perturba-
tion on a known reference speed, c(x), expressed
as

L R B

7 (1) S (x)

The total field u(z, &, w) is decomposed into
an incident fieid #;(x, ¢, ®) and the scattered field

(14 a(x)] (3

u,(ry &, w), that is

ulr, & w) = u(r, & o) + ulz, & w) 1)
Similar to Eq. (25) in the paper by Bleistein

et al (1985), we have, for 2. 5D case

8c} kq .
alr) = = dk,dk,d& de Etus(q, Sy t)

X el ey (5)

in which o = ¢,sgn(ks) VAT + A3

Because we have used the Born approximation
and the high frequency assumption to get the formu-
la (5), the « (x) in Eq. (5) is different with the
true unknown « (x). Especially, when the subsur-
face velocity variation is not small and observed da-
ta is band-limited in frequency and contains noise.
how much information of the true unknown « (x)
that the « (x) in Eq. (5) contains is unclear.

In this paper, a new inversion method with
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two dimension wavelet transform is presented. The
detection of the singularities of the ¢ (x) in Eq.
(5) with multiscale wavelet transform is studied in
section 2, and the relation between the interior sur-
face with the modulus maxima of the wavelet trans-
forms of the ¢ (x) in Eq. (5) is investigated.

Second, we study the infection of the limited
band width of observation in frequency. But, how
to suppress the noise, which is caused by the noise
in observed data, from « (x), we will study it in
another paper.

2 THEORY

We choose two dimensional wavelet function
#'(2) and ¥*(x) and as similar as Mallat and others
(1992)1,

p@ =20 s = 6

N 1 A . .
in which Q(z) = 2—e’ 7~ is Gaussian function.
a

Lot Q.(2) = 20(%) and
S S

x

(1) = 4
P = () (7)

Wia(z) = (a* p)) (x) = si(awom (8)

“§

where * ” is convolution operator, i =1, 3.

The two dimensional wavelet transform of «
(x) is given by
{ ° ( )\
. CWlalx) s aIla * Qs la
Wa(x) = ( ,
Wia(z)

9
s —axQ.(1)
ar3

= sV (a*Q)(x) M
where “\/” is the two dimensional gradient opera-
tor.

With the help of setting |W.« (x) |=[|Hla
(x) 12+ | W3a(x) |*]"?,in the following we can
prove that the value of |W.u(x) | is maximal when
x is on the interior surface in the earth. So we
know the position of subsurface by detecting the
maxima of |W.a (x)|.

2. 1 For the Single Tilted Plane Case

As shown in Fig. |, suppose the equation of ti-
tled plane f is r;sinf/ 4 xr3cos) — heos) = 0, with

speed * = ¢¢above the plane and speed = ¢, below
the plane. Let & = (&,, 0, 0) is a point on the
line of observation. Suppose a unite impulse is set
off at the surface, the reflected data at the surface
can be approximated by

0t — 2l/c)
u, (&, ) =R 8 (10)
where (= hcosh — &;sinfl, R = i:%:z is the nor-

mal incident reflection coefficient.

L)

Iy

z3

Fig. 1 Model for tilted plane

The data «.(Z, t) are substituted into Eq. (5)
and the calculations are carried out. one obtains
dw .,
—e-

2R (- o
(1(‘1,> — = J r—zlﬂnu—(h Tagleosr o (] ])
e LC)
where o = ¢, kssecl)
Substituting Eq. (11) into Eq. (8), one ob-
tains
i Rssind *
[Wle(r) | = — 2 ssqm J w
T _
>< J ) e?zw'(ui—:]mnu- - ys—xz)cow:u“
1 4w
X ?e 22 dydys 2>
and
. Rs 0"
Wie(r) = — Zsﬂj dw
T .
X J . eiru'(ylf—xl)smvf(I/-ysfzs)mw:/(u
1
X s.?e .2 dydys (13)
By the well known Fourier transform
J‘ el gy = (27)! ¢ oD (14)




Vol. 4 N2, 3

one obtains

Wla(z) = (— 2R v/ 2/ v/ 1 )sin®

X efﬁi—rlsinv—u—xa)mwji’ (15)
Wia(z) = — 2R V2 / v/ xcost

X efzi_z[wrlsinof<h—r3>coso:2 (16)
Due to |Wa(z)| = Vv [Wla(x)|? 4+ [Wia(x)|?,
from Egs. (15) and (16)
W) | = ARc, e7$[7715i"0+(h*x3)cm032 an

2a

Eq. (17) implies that, when — z;sinf + (h —
z3)cosf = 0, the value of |W.a(z)| is maximal.
Noting that the equation of the tilted plane g is
x;18in0@ + z3c088 — hcosd = 0 , So the maxima of
|[W.a(z) | correspond to the tilted plane f. There-
fore, we know the position of subsurface in the
earth by detecting the maxima of |W.a(x) |.

Next, we investigate the infection of the limit-
ed band width of the observation in frequency. At
this case, Egs. (12) and (13) reduce to

Wa(z) = — 236;‘“0J”‘ I(0)do (18)
Wia(z) = — ZRS;"S"J” I(w)do 19
here
I(w) = e~'+? (20)
2s?
a = c—f’
b — 2[— z;5in0 + (b — z3)cosh o1

c,
By Eq. (20), first we calculate the following
integral ;
Z(a, b) = J- ‘e’ coshadw,
“0
Z(a, b) = J 'e="sinbwdw
“g
one obtains

? fo b )
Z,(a, b)) = eJ;T,{J‘ le“"’zdco +J [e“"“’fsin'rwl

“0

3 . 1 2
— e *osinTmy | Zeﬂdr} (23)
o2 2
Zy(a, b)) = e’EJ [e™*IcosTa,
2 1 .
— e *cosTmy | %eﬂdr (24)

By Egs. (20), (23)and (24), from Egs. (18)
and (19), one obtains
Wia(z) = — 4Rssind)

ol

w

.
_ b o2
[e “J e “duw

0
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+ e Wlds by s )] (25)
‘ 1Rscosl) 1t v o
Wia(z) = — _lR:CQOS Le” TuJ o “duw

o
4 e T by wos @)1 (26)
in which, :

- i
ZCay by wos wi) :J —[e “ISiNTw,

. 24
. .
— e "isinTw, endr
v Y
+ | —le "cosTw,
J«, Zu[

(27)
From Eq. (27), we have the following inequality

— e~ "cosTe, Jendr

,
s
le " TZay by oy )]

] 2 2 L2 v
< _(e*ﬂwl + efuuo)ef‘—u(u 7A0)

a
70 € (0, b) or 7, &€ (L, 0).

From Egs. (25) and (26). and inequality
(28), we obtain

(28)

where

. 4Rs v [¢ -
W) | = Afs, n]J e " do
CoX

‘,D
29
Especially, as wg —>— oo and o, -+ oc, from
Eq. (29), one obtains
[W.a(x)| = 4RCo/ \/Ze’#:"l“"”'“’”s)m"’ ’
30)
This equation is the same with Eq. (17).
From Eq. (29) when the observed data is limited-
band in frequency, we know that, as b = 0, that
is, 7;5in® + (a3 — h)cos) = 0, the value of

+ Z{ay by wys )]

|W.a(r) | is maximal.

Therefore, we still know the position of interi-
or surface by detecting the modulus maxima of
W.a(x), for the limited band case.

2.2 At the General Case

Suppose the equation of interior surface £ is
f(x;, 23) = 0, and for r "close enough” to the sur-
face g, there will be only one perpendicular from r
to f, as Fig. 2 shows.

In the following we can prove that the value
of |W.a(x)]| is maximal, when «is on the surface.

Similarity to Eq. (5:1) in the paper by Bleis-
tein and others (1985)-' , we have
813 J(_J r[;J " Vil 1

32
vVaiaJdF

alr) =

o) !
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Fig. 2 Model for 2D curved surface

X (26, o) Jel il (31)
Here,
p= v (x _C1)2+1%a
&= (&, 0, 0), and
u.(&y w) = rtus(:, De'dt. (32)
0

For u,({, w), we use the kirchoff approxima-
tion backscattered field, completely similar to Eq.
(67) by Bleistein and others (1985)!", we obtain

a(z) = B, ijez’“’”“u Law (33)
tw

V|1 — nka| T
where R,, n, k and o are the same with those in
Eq. (67) by Bleistein and others (1985)"':.
Because, r — p = ¢, with ¢ > 0 when z is
above B and o < 0 when r is below £, ¢ denots the
signed distance along the normal vector n. Given a
point z close enough to surface f, drop perpendicu-
lar from z to f and z, is the foot of the perpendicu-
lar. At the point z,, the normal vector n is
n=(f, (), 0, f. (z))
Hence , from above discussion, we know that
there exists a factor u > o so that

0 = /l[f’zl(lo)(fo — Zo1)

+f,13(1‘0)(1’371'03):| (31)
By Egs. (33) and (34), one obtains
a(z) = —Fo 1
V1 — nko| 7
X Jez'““[f'xl(’0)(’1*’ol)*f'xg(’n)(‘sf’oa)j/"o _ldw (35)
70)

where the domain of integration were (— oo,
o) or (wysw)
Similar to Eq. (29), if r is near enough to sur-
face f, one obtains
. , 4R, _i
|U L) | = —-—b——e‘ Il_a)

c, V|1 — nka|
ljwlexp(* aw))do + Z(a, by, woy @)

vy

(36)

where

a= 282/c'5|:f’31(1’0) + f’fz(ro)],

b= 2[f", (@) (x) — r0))
+ f/xg(rl’o)(l’s — 153) /¢

Z(a, b, wy, w ) satisfies the Eq. (27).

Eq. (36) implies that asb = 0, i.e. | = 1y
and r; = 143 , the value of |W.«(x)| is maximal.
This means that, when r is on the surface, the
modulus vatue of W z(xr) is maximal.

3 NUMERICAL EXPERIMENT AND
DISCUSSION

Comparing with the reflection function
method introduced by Bleistein ( 1985-'-, and
1979->-), based on Egs. (29) and (36), we can
not only detect more precisely the location of the re-
flector, but also analyse the effect of the limited
band nature of the input data. Therefore, the
method in this paper can eliminate the pseudo-im-
age problem of the reflection function method.

In Fig. 1, take# = 15°, ¢, = 4500 m/s. , ¢,
=5500 m/s and #» =2 000m. For this model, the
reflection function #(z) in Refs. [1] and [2] is

f(2) — %ri,,{x'lsinly 4 (2000

— 13)cos15°} (37)
03 (+) is a limited-band Delta function.

Fig. 3(a) is a 10~50 Hz band width represen-
tation of the reflection function f(x) in Eq. (37).
There exists obviously a pseudo-image about the ti-
tled plane in Fig. 3(a). But Fig. 3(b) is a 10~50
Hz bandwidth representation of |[H.«(x)| in Eq.

where

(29), there is not any pseudo-image.
On the other hand, the wavelet operator
|W.«(r)| can suppress the noise in the observa-

tion. It will be studied in the continued paper.
(To page 8)
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This is the optimum decision of blending and enhance control level of ore quality, then the
which has considered the blending risk and its prof- mine can obtain not only a great deal of profits but
its comprehensively, according to the present ore also much more poor ore resources. On the other
blending level. hand, when o? decreases, the output grade fluctua-

tion will reduce, it is beneficial for smelting materi-
6 INFLUENCE OF RANDOM ERROR al blending, and the follow-up benefit will be very
ON ORE BLENDING considerable.

Table 3 Optimum expected blending

infl . 9 B
The influence of square deviation ¢° of ran grades z* and successful probablities P

dom error ¢ on expected blendig goal is sensitive.

When different probabilities of real blending grade v T P(53.5 <z <<54.0)
z, y € [53.5%, 54.0% ], are given, then the 0. 1 53.61 94.16
corresponding optimum expected blending grades z * 0.3 53.73 59. 25
and successful probabilities P are obtained as shown 0.5 53.78 38. 49
in Table 3. 0.7 53. 82 24.60
Table 3 shows that the less the value ¢?, the
less the value z* , it means that more poor ore can REFERRENCES
be blended, meanwhile, the less the value o?, the
more the successful possibility P of blending, the 1 Qi, Guo-an et al. J of Mines, 1992, 1. 23— 25.
less the blending risk. 2 Shu, Hang. J of Mine Tech, 1992, 3. 56 —58.
Hence, the mine must depend on technologi- 3  Shu, Hang et al. J of Metal Mines, 1992, 3. 54—57.
cal improvements, improve management methods,
(From 1)
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Fig. 3 A 10~50 Hz bandwidth representation of the reflection function B(x) and the wavelet |Wsa(z) |
(a)— () ; (b)— |Wga(s) |
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