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STRIP LOADED BY SYMMETRIC LOCAL UNIFORM FORCES"
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ABSTRACT

Nowadays composite materials much used in industry are orthotropic. This article introduces
the expressions of components of stresses and components of displacements in a rectangular plate
or an infinitely long strip which consists of these materials and is loaded by local uniform forces
symmetrically at upper and lower edges.
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Materials such as glued board etc. and crystal
of rhombohedral system all are orthotropic, i. e.
there are three symmetrical elastic faces which are
perpendicular to each other in every point of these
materials, the property of which is symmetric to
these faces. The direction perpendicular to the elas-
tic symmetrical face is called elastic principal direc-
tion. According to anisotropic theory of elasticity ,
there are nine independent elastic constants in or-
thotropic body.

Taking the coordinates r, y, and = along the e-

lastic principal directions, general Hook’' s law
i

are-
in plane stress state;
1 U
& = 0, — — 0
) E] [Jg Y
1 Ui
e, = 0, — =0, (la)
¥ ]Dg ¥ ['II r
1
Yy = 5T
¥ (”2 ]
in plane strain state.
e — 1 — Pisha - M -+ LRI ]
: E ‘ K. i
1 — u3optos o + sz
g, = g, — —————0, - (lb)
’ E, ! E, {
!
Vo = 57T |
7y G J
where [F,, E.are modules of elasticity in tension
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in directions r and y respectively ; u- is Poision’ s ra-
tio of contraction in the y direction under stretching
in the r direction and so on; G, is the shear modu-
lus of elasticity deciding the change of angular be-
tween r. y directions. There are relations between
module of tension and the Poison’ s ratio as fol-

lows .
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For simplicity eq.

(la) can be written as.
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Solving the problem in stress and neglecting
body force the stress components can be expresseed
by stress function for the two kinds of problem as

follows .
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The stress function should satisfy the compati-
bility equation as follows
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Ref. 2 has given the results of stress compo-
nents in isotropic long strip which is loaded by local
uniform forces symmetrically at upper and lower
edges (Fig. 1). Now let’ s discuss the circumstance

of orthotropic strip. Let’s expand in( — {, [ ) the
load ¢ as Fourier series;
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Fig. 1 Rectangular plate loaded
by symmetric local uniform forces
By letting o = kx/( (9

(7)9 (8), (9) into €q. (6)

and substituting egs.
we can obtain.

g = %a + %; Tllsinaa * cosay

Taking stress function according to ¢y of eq.

(6) as.

(10

Py = azy’ (b
and according to g.cos(kay/( ) as;
@ = ficos(hay/l) (12)

and substituting the later into eq. (5), we can ob-
tain an ordinary differential equation for f, . Its
characteristic equation is.

L 2Hiy 2 b
/,Du 2 u + B 0 (13)
The solution of eq. (13) is.
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For orthotropic body con51sted by ordmary compos-
ite materials;
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=+ u,and — u,are unequal real roots, for which the

solution of the ordinary differential equation can be
written as;

fi = Achu,ar + Bishuyar + Cichusax

+ Dishu-ax

in above expression we have let.

a = ka/l

Substituting f, into eq. (12) and considering
symmetry of this problem we have,

@ = (Achuaxr + Cichusax)cosay (15)
Then the stress function for this problem is;
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Substituting eq. (16) into eq. (4) we obtain

. Y
v, = 2as — ‘> a cosay (A,chu, ar
L
-1

—+ C,chusar)

N, )
o, = L ccosay (i Aichuy ar
1 - 7
+ ws3C . chusar)

N
Tu = ll((_Sln((!/(”lA/.Shlu{u
t-1

—+ wuaC',shuscer)
From Fig. | the boundary conditions of stress-
es are;:
v == h- 7,, =0

g, == q
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X 2sinaacosay)
Substituting 1., and o, of eq. (17) into it, we

can obtain
g =—qa/20) l
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in which we have let;
A = w;shu,ahb + chusah — uschu,ah » shusah  (19)

Substituting obtained unknown constants back
into eq. (17) we obtain the expressions of stresses
in orthotropic strip in Fig. 1.
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where A, a, have given in eqs. (19) and (9)

respectively; u,, u- are the unequal real roots of
eq. (13) and have been expressed in eq. (14).

Substituting obtained expressions of stresses
(20) into general Hook’ s law (3) we can obtain
the components of strains ¢, ¢, v, , for plane
stress state. Substituting obtained ¢, , ¢, into the for-
mer two expressions of the following geometric
eqs. :

(21)

oy ar
and integrating them we can obtain the components
of displacements of any point in r, y directions re-
spectively in orthotropic strip in Fig. 1.
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in which f,(y), f.(x) are unknown functions of y

and x respectively. To obtain the two functions,
substituting ., of eq. (20) into the third eq. of eq.
(3), then substituting obatined y,, and «, » of eq.
(22), (23) into the third eq. of eq. (21), simplif-
ing them and using egs. (14) and (2). finally we
can obatain .
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From these we have.

[ =Cy+ b
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Substituting f,, f- into egs. (22), (23) re-
spectively we can obtain ordinary expressions of
components of displacement. By using the condi-
tions of svmmetry (Fig. 1) .

r=0,y=0.u=0,0=20

y = 0. r=10
we can obtain "' = ) = I' = (0 . Finally the expres-
sions of components of displacement in orthotropic
strip in Fig. | are.
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By letting u» = uy + Aun
eq. (20), using L’ Hopital rule, differentiating
the numerator and the denominator with respect to

(25)
in the first eq. of

A\ u respectively and then letting Au — 0, u, = 1

we can obtain the component of stress in isotropic
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strip;
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Before using the L' Hf)pital rule we have sub-
stituted 4 of eq. (19) into eq. (20). Substituting
back a@ = kn/l of eq. (9) into above eq. and letting
z == 0 we can obtain .
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This is the result given by Ref. 2.

If the strip is infinitely long, i. e. <1
—»—+ oo, then Fourier series in egs. (20), (24)
and (25) turns into Fourier integral. Having let @
= kn/I before, now letting Ae = n/land! —>oo,
the first term in egs. (20), (24) and (25) vanish-
es and the later turns into Fourier integral, the com-
ponents of stress and the components of displace-
ment in infinite long strip are:
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In all formulae above, A, a, u,, u, are given
by egs. (19), (9) and (14) respectively. The all
above formulae are obtained for plane stress state.
For plane strain state, substituting the constants of
elasticity according to egs. (la) and (1b), we can
obtain the formulae of the stress and displacement
components.

It has to be pointed out that in the previous de-
duction we have taken directly the operation of dif-
ferential and integeral of series, but have not
shown whether the series is uniform convergence or
not. But in fact it is. If we substitute 4., C.of eq.
(18) into stress function (16), neglect non-series
term and then substitute eq. (19) into it, we have;
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Because r <C & , the fraction of the later part
on the right of above expression equals at most to
one, the numerator of the former part can always
be smaller than 1, and the denominator can in-

crease infinitely with k. Taking numerical series;

Py
= ka/l
obviously
cos(kay/l) « sinChkaa/l) 1
\ /1'.’1/[ | S m
According to Weierstrass’ s criterion the series is u-

niform convergence. The others can be shown so.

The operation for all series above is legal.
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