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ABSTRACT

To solve the problem of heat balance (HB) supervision & control of point-feeding alumini-
um reduction cells, an adaptive predicting estimation model (APEM)of dynamically balanced
bath temperature ( DBBT) is established, which co- operates with a temperature measuring de-
vice, the later employing the method of temperature dynamic measurement (TDM) and operat-
ing in intermittent way. Since it can realize quantitative description of the relationship between
the output—DBBT and the inputs—heating power and equivalent feeding rate, of a HB system,
APEM can be used in the design of a HB supervision & control system of a point-feeding cell.
Its effectiveness has been tested by using the data measured on a 160kA point-feeding prebaked
anode aluminium reduction cell.
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1 INTRODUCTION measurement in use, which measures celll

shell temperature or side wall heat flux.
It is well known that good maintenance

of heat balance (HB) of cells is a key to the
attainment of good technological and eco-
nomic targets, therefore, realizing on- line
supervision &nd control of HB is a long-
standing problem that aluminium metallur-
gists have hoped to solve. As the bath is a
strongly corrosive melt, conventional con-
tact-type sensors are unable to operate con-

However because the delay- time of its re-
spose can reach one hour to several hours
and its respose is disturbed by variations of
ledge thickness, it can only be used for the
qualitative analysis of medium- long term
changing tendency of HB. At present, in
some advanced control systems a kind of HB
control model has been used which is based

tiniously for a long time, and so, they are
only used in manual measurements of short-
term tests. Contactless-type sensors are un-
available because the surface of a cell is cov-
ered by crust, and the crust thickness is vari-
able. Nowadays, there is a kind of indirect
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on energy balance calcultation, but obvious-
ly this is a kind of “open loop” control
method of poor accuracy. To solve the diffi-
cult problem— HB supervision &. control,
our lab has carried on studies on the method
of  temperature

dynamic measurement
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(TDM) and has reaped first fruits in labf'J,

The device of TDM can automatically insert

a thermocouple into the bath, using the dy-
namic varying curve of the potential signal

obtained in the transient contacting process

to calculate the bath temperature correspond-
ing to the steady state of the potential sig-
nal. In this way, thermocouple-bath contact-
ing time can be reduced, and so, the service

life (measuring times) can be extended. But

the weakness of the method is that the ser-
vice life of a thermocouple is still restricted

by the material of its protective shell, and,

therefore, the method may have industrial

use value only when the measuring frequen-
cy is restricted in the range of once per sever-
al hours. To make up for this weakness and

to realize real- time and accurate surpervi-
sion and control of the HB states of point-

feeding aluminium reduction cells, we have

established a bath temperature model which

co-operates with a temperature measuring de-
vice, the later employing TDM and operat-
ing in intermittent way.

2 ANALYSIS AND TESTING OF HB
CHARACTERISTICS

Because crust thickness and ledge thick-
ness vary with changing bath temperature, a-
luminium reduction cells possess quite strong
self-balance ability. In addition, techniques
of semicontinuous point-feeding and cell volt-
age autoregulation have been widely used,
therefore, with average- time concept, the
HB system of a cell can be regarded as “ a
dynamic balance process”, the slow- time
varying tendency (the smoothed curve) of a
varying curve of bath temperature as“ dy-
namically balanced bath temperature ”
(DBBT), and DBBT as the supervision &
control parameter of HB.

The first input variable which influ-

ences HB is “heating power” (denoted by
@ ), which is calculated with.

Q=4 — A — A (D
A, denotes electric power inputted in-
to the cell. It is calculated from on-line sam-
pling values of cell voltage and line current .

A, =V 1 2)
V. and I denote cell voltage (V)
and line current(kA), respectively.
A; denotes electrochemical reaction pow-
er (kW) required by the electrolytic process.
By using thermodynamic data ( at 1 223
K)[?1, an equation for approximate calcula-
tion of A, can be derived from the electro-
chemical reaction equation, that is;
A = (0.441 4+ 1.1317) « I (3)

I still denotes line current(kA); 7
denotes current efficiency, which is assumed
to be a constant, but can be modified when
data from aluminium tapping are available.

A. denotes the power (kW) dissipated in
metered external resistances( outside the HB
system). By giving the value of the external
resistances R, (p Q), A. becomes a function
of line current I( kA) .

A. = R. » I*/1 000 €))

The second input variable which influ
ences HB is material feeding rate. In gener-
al, it is alumina féeding rate calculated and
ordered by the process control system, but
its accurate calculation becomes difficult
when manual operations ( anode setting, a-
luminium tapping) occur which can cause ad-
ditional feedings and additional heat dissipa-
tion. Nevertheless, to maintain the continu-
ity of HB supervision & control, we take
the influence of a manual operation on HB
as being equivalent to an increase of alumi-
na feeding rate. This is realized on the basis
of thermodynamic datal>! and our field
tests, and the equivalency can be dealt with

where

where

where

automatically by the process control system.
As for electrolyte additions, due to long addi-
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tion period and small addition amount, we

also, on the basis of thermodynamic datat?’,

take their influences on HB as being equiva-
lent to increases of alumina feeding rate. As

a result, the second input variable can be de-
fined as“ equivalent feeding rate” of alumi-
na. Now, the HB system of a point-feeding

cell has been simplified as a double input-sin-
gle output( DISO) system, the inputs being

heating power (denoted by @) and equivalent

feeding rate (denoted by F. ), the output be-
ing DBBT ( denoted by T,)

To test HB characteristics of point-feed-
ing cells, we chose a 160 kA point-feeding
prebaked anode aluminium reduction cell in
normal operation as a test cell, and used a
self-made data sampling system® to sample
cell voltage, line current, bath temperature,
etc. Raw bath temperature signal was ob-
tained with a NiCr- NiSi thermocouple that
was protected by a silicon nitride tube. To
eliminate high frequency disturbances in the
temperature smpling tunnel, lowpass filters
were set in both hardware and software of
the sampling system, and quite fast sam-
pling rate (1~ 10s) was used to sample pri-
mary bath temperature signal.

In order to carry on system identifica-
tion experiments, we designed the input vari-
ables according to pseudo-random binary se-
quence (PRBS), and this was realized by ad-
justing the anode-cathod distance (ACD) and
the time interval of feeding.

It has been determined by our tests
that, under normal conditions, the settling
time and the time-constant of the HB system
of the test cell are about 60min and 15min,
respectively , hence, bit width of PRBS and
sampling period for DBBT estimation were
all set as 12 min , and the lowpass-filtered
average of primary bath temperature signal
in every sampling period (12 min) was taken
as the measured value of DBBT in the corre-

sponding period.

3 ADAPTIVE PREDICTING ESTIMA-
TION MODEL(APEM) OF DBBT

3.1  Hentificatum of CAR Model

A controlled auto- regression ( CAR )
model has been used to describe the HB sys-
tem of a cell. By using a linear difference e-
quation, the CAR model is expressed by

=1 =

+ ek — ) +d+ e (5)

where y (k) denotes the output variable,

here representing DBBT ; u, (%) and u,(%k) de-

note the two input variables (i. e. the con-
trolled terms); d denotes the model bias

(here temporarily assumed as a constant) ;

e(k) denotes a Gaussian white noise term

with zero mean; ng, 7, and n, are the orders

of auto-regressive part, and of the two con-
trolled terms, respectively. Suppose in a HB
system the base output corresponding with
the base inputs( @ = @, F; = F, ) is equal
to Ty (i.e. Ty = Ty ). In order to enhance
model identification accuracy, the sampled
sequences of input and output variables (de-
noted by Q(K), F. (k) and T,(k) , respec-
tively ) should go through a disposal of sub-

tracting their base values. Moreover, Q(k)

should go through a disposal of reducing by

suitable times. Hence, the input and output

variables of the CAR model become .

(k) = [QUk) — @ ]/100  (6)
up (k) = Feq(k) — Fo (7
y(k) = To(k) — T, (8)

equivalent feeding rate F (%) is rep-

resented by the equivalent feeding times in
the sampling period (¢ — 1) ~ k; Q(k) is
calculated with egs. (1) ~ (4),but cell volt-
age V. and ling current / used in those equa-

where
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tions should be replaced by their average val-
ues in the period (¢ — 1) ~ % (denoted by
V.(k) and I(k)) . Then, the following equa-
tion can be derived from egs. (1)~ (4);
Q) =V (k) « I(k) — (0. 441 + 1. 1317)
X I(k) — R. « I1(k)?/1000(kW)
€D

The base values @y, Fy and T, are ap-
proximately substituted by the assembly aver-
ages of Q(k), F.,(k) and T, (k) , respective-
ly, With a CAR model auto-identification al-
gorithm[*) based on recursive least- square
method and the parsimony principle, the de-
termination of suitable model order and
time-delay, as well as the fitting of model
parameters can be carried out automatically
by computer. Finally, a parsimony-parame-
ter CAR model can be obtained.

As for our test cell, DBBT sampling pe-
riod( 7 ) has been set as 12min . The base
values: Ty = 958 C, @, = 400kW, F, =
2times/12 minutes, have been given on the
basis of statistical results. The CAR model i-
dentification results are
y(k) = any(k — 1) + azy(k —2)

+ bouy (k) + bu (b — 1)
+ bouy (b — 2) + couz (k)
+oeou(k—1) +d +eCk) (10)
where
[ a1yas5 bos bry bay Coy €1y d]
= [1.075, — 0.199, 3.694, — 1. 330,
0.276,—0.124,—0.204,—0.174]

3.2  Multistep Predicting Estimation (P. E.)
of DBBT and P. E. Errors

Now that CAR model has been ob-
tained , by setting the white noise term e (k)
= (0, the model can be used to estimate
DBBT in the way of multistep prediction. In
order to keep generality, here we still use
the general equation, (eq. (5)), in the fol-
lowing discussion, therefore, the following

P. E. equation can be acquired .

ID ﬂl
k) = Zagk — i) + Zbu (k — i)
i=1 i=0

+ Boun(k — i) +d (1)

where §(k — i), ¢ = 0, 1-+*ny, , denote
the P. E, values of y(k — i) . Obviously,
when 7(k — i), i=1, 2--+ny , on the right
side of eq. (11) are replaced with known
y(k — ¢) , eq. (11) becomes the case of
one-step P. E. , otherwise, it is the case of
multistep P. E. When multistep P. E. is car-
ried on , deviations between P. E. values
and actual values will gradually increase due
to measurement noises, environmental dis-
turbances, timevarying characteristics of the
process, and error accumulation caused by
recursive calculation, therfore, available P.
E. steps are limited. As to our test cell, by
using eq. (10) for recursive P. E., it has
been found that, under basically normal con-
ditions, P. E. deviations are generally with-
in +2.5 C as long as recursive P. E. steps
do not go beyond 20. Hence, the average
sampling interval of TDM (temperature dy-
namic measurement) can be set as 4h, i.e.
every 4h or so , it is necessary to use obser-
vations of TDM to reset starting points of P.
E. as well as to provide innovations for
adaptive modification of model parameters.
As the sampling interval of TDM is by
far larger than the sampling period of
DBBT, observations of TDM are not enough
to modify all the parameters in the CAR
model. Our studies have shown that the ma-
jority of P. E. errors can be attributed to
variations of model bias ¢ . For example ,
when a variation of the overall heat transfer
coefficient of the cell results in the base val-
ue of DBBT (corresponding to the base in-
puts @y and F, ) varying from T to Ty +
AT, , the model bias will vary from d to d
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"o
+ [1 — X a,] under the assumption that in
i=1

the CAR model all parameters except d do
not vary.

3.3 Adaptive Modification of the CAR Model
Biuas d

With the assumptions that TDM sam-
pling interval is m times DBBT sampling peri-
od and the estimate of d at point k is d(&) ,
the estimate 7 (k + m) of y(k + m) can be ob-
tained with the CAR model (eq. (11) )cal-
culating from & + 1 to & 4+ m in the way of
recursive prediction, that is;
gk +m) = Yaglk +m — i)

i=1

+ Zbu (k4 m— )
1=0

+ i’c,uz(k +m — 1)
i=0
+ d(k) 12)

To derive a modification algorithm, we use
several assumptions. First, it is assumed
that TDM gives a measured value at point k£
+ m , which, after being subtracted the
base value T , is denoted by Ty (k¥ + m )and
used as the observation of y(k + m ). Sec-
ond, the observation noise term (denoted by
{(k + m)) is assumed to be an independent
Gaussian noise term with zero mean, i. e.
Ti(k + m) = y(k + m)
+ &k + m) (13)

Third, variations of model bias 4 are as-
sumed to fit the generalized random- walk
model, i.e.

dtk +m) = d(k) + wk + m) (14)
where w(k + m) is assumed to be an inde-
pendant Gaussian white noise term with zero
mean.

With these assumptions and steady-
state Kalman filtering principle, an algo-
rithm for adaptive modification of the model

bias d can be derived;
0+ my = [LEEm) 3Gt my
X dk) + K; (15)
K is a modification factor ( K; <C
1 ), which has the meaning of steady-state
Kalman filter gain ; T,(k + m) is the obser-
vation given by TDM at point k + m; y(k +
m) is the P. E. value given by the CAR mod-
el at point k + m; K, is calculated with the
following recursive equation .

where

K, = ‘L’a,K,,,,i + 1, If m <,

i=1
then K, ;, = 0
where

(16)
ng is the sub-order of the auto -re-
gressive part in the CAR model. --

3.4 Resetting of Starting Puints of P. E.

After being used to modify the model
biasd,T,(k + m) is also used to reset start-
ing points y(k + m — ), 1 = 0,1, 0 ,
which will be used in P. E. of DBBT during
next interval (k +m + 1) ~ (k + 2m) .
Because the estimate of d in the interval (&
-+ 1) ~ (k + m) has been modified at point
k 4 m from d(k) to dd(k + m) , the first
modified values (denoted by 7, (k + m — 1)
of y(k + m — 1) can be obtained with eq.
an
4 m— ) =gk +m— i)

+ Koo @k +m) —a®)| (A7)
K, . is still calculated with the
same recursive algorithm as eq. (16).

Because at point £ and point £ + m the
innovations provided by the observations of
TDM are.

where

e(k) = To(k) — 51 (k) (18)
ek +m) = Ty(k + m)
— yk +m) (19

the innovations at £k + m — i may be approxi-
mately calculated with

ek+m— ) =¢e&)+ (m—1)/m
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X letk +m) — k)],
0<<:<<m (20)
Now, by imitating the steady- state
Kalman filtering, the second modified val-
ues (denoted by 7,(k +m — D)) of j(k + m
— 1) can be obtained .
pG+m—3) =asek+m— 1)
e+ m—2) @2
where the modification factor a(a < 1) may
be determind as a suitable constant by tests,
but, when such manual operations as anode
setting, manual feeding ,etc, or anode ef-
fects take place during k ~ (k+ m) due to
poor reliability of 7(k + m), @ = 1 should
be set, let the resetting of the starting points
of P. E. depend entirely on the observations
of TDM. By replacing £, (¥ — i) and d in
the CAR model (eq. (11)) withk+m—: ,
#2(k + m — i) and d(k + m), respectively,
the resetting of the starting points of P. E. is
realized.

3.5 General Constitution of APEM

From the above discussion, we can
sum up the general constitution of APEM in
Fig. 1.

4 VERIFICATION OF APEM

Since we have not carried on the test-
ing of TDM together with that of APEM,
we chose 4 h as the sampling interval and
sampled the primary temperature values
from those sampled by the data sampling sys-
tem, so as to simulate observations of
TDM, and then, to verify APEM.

By off-line testing, it has been shown
that APEM can solve the problem of DBBT
estimation as long as cell conditions are basi-
cally normal (i.e. except anode effects and
about 1 h after an anode effect,as well as se-
riously abnormal cell conditions). General-
ly, estimation deviations are within +3 C.

Fig. 2 shows a testing example.

f
Calculate imput variables |k= k -+ 1
u (k) yup (k)

eq. (7)~eq. (9)
|
Estimate DBBT with CAR
model in way of prediction
eq. (11)
]

Is there a measured valu N
T.(k) of TDM?

R

Are the cell conditions N
normal now?

Y
Modify CAR model bias d(k)
eq. (12),eq. (15),eq. (16)

Reset starting points of P. E. '
eq. (17)~eq. (21)
L

General constituion of APEM

Fig. 1

Finally we should point out that ; (1)
in actual use , the estimation accuracy of
APEM will depend, to a great extent, on
the measurement accuracy of TDM; (2)
APEM does not demand that the sampling in-
terval ( m ) of TDM is constant, hence, in
order to keep observations of TDM being as
close as possible to the actual values of
DBBT , and then, to enhance the estimation
accuracy of APEM, measurements of TDM
can be arranged at the moments that the in-
put variables are quite stable; (3) with aver-
age-time concept, it can be concluded that,
as long as the mean of observation errors of
TDM is equal to zero, the unbiassedness of
DBBT estimation can be ensured.

5 CONCLUSIONS

(1) An adaptive predicting estimation
model (APEM) of dynamically balanced
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Fig. 2 Estimated curve and measured values of DBBT
u; — the input variable depending on heating power @ (k) ; u; — the input variable depending on equivalent
feeding rate F. (k) ; X -—measured temperatures(‘C) from simulated TDM; datted line—measured temper-
atures(‘C ) of DBBT; solid lines estimated curve of DBBT from APEM; TAP—aluminium tapping; AC—
anode setting ; Bath compisition; CR==2. 7, % CaF,~5; Sampling period for primary signals =1s; Sam-

pling period for DBBT estimation =12 min.

bath temperature (DBBT ) has been estab-
lished, which co-operates with a temperature
measuring device, the later employing the
method of temperature dynamic measure-
ment (TDM ) and operating in intermittent
way, APEM consists of a DISO CAR mod-
el, an algorithm for adaptive modification of
the CAR model bias, and an algorithm for re-
setting of P. E. ( predicting estimation) start-
ing points.

(2) By using the data measured on a
test cell , it has been verified that APEM pos-
sesses quite satisfactory estimation accuracy.
The values of bath temperature measured in-
termittently (once per several hours) by
TDM can be used to modify the slow-

timevarying model bias, and therefore,

APEM has the ability to be adaptive to the
slow timevarying process of the characteris-
tics of the heat balance (HB) of a cell.

(3) Having has realized quantitative de-

scription of the relationship between the out-
put—DBBT and the inputs— heating power
and equivalent feeding rate, of the HB sys-
tem, APEM can be used in the design of a
HB supervision & control system. The com-
bination of the parameter estimation method
with TDM can become an effective way to
solve the problem of HB supervision & con-
trol of point- feeding aluminium reduction
cells.
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