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ABSTRACT

Rockburst possibility prediction is an important activity in many underground opening de-
sign and construction as well as mining production. Insufficient knowledge, lack of characteriz-
ing information and noisy data restrain the rock mechanics engineers as well as mining engineers
from achieving optimal prediction results. In this paper the authors present a novel approach to
predict probable rock bursts in underground openings. The approach is based on learning and
adaptive recognition of neural networks and allows input infomation to be incomplete, vague
qualitative and noisy. The predicion task is carried out by two neural network subsystems in cas-
cade. First a neural network is used to predict intensity and location of probable rock bursts.
Next, another neural network uses this predicition and other geological features to identify the
practical measures for prevention and mitigation of rock bursts. The experimental results on 10
cases show that a rockburst prediction accuracy of 100%; was reached with constructed two neu-
ral network subsystems.
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1 INTRODUCTION rockburst occurrence and its control are im-

portant activities in underground openings.
Most of the catastrophes in under-

ground coal mines and hydroelectric tunnels

Great strides have been made over the
last few decades in this field. Russens has

are caused by rockbursts. Severe rockbursts suggested a classification scheme to estimate
appeared to have been accompanied by the the intensity of rockbursts. Kidybinski
throw of blocks, platelets and slabs which (1981) has suggested a bursting liability in-
may have a weight of many tones and by dex of coal to classify the occurrence and in-
the upwards bending of the floor with fis-  tensity of rockbursts into three classes.

sures of several cm width['l. Rockbursts of- Tanl?*! has introduced a fuzzy method to char-
ten occur suddenly when there is not enough acterize uncertain data in rockburst predic-
time to reinforce surrounding rocks. If not tion. Some researchers (e.g. Tant'l, et
properly treated they will deteriorate the sta- al . ) have applied numerical analytical tech-
bility of openings, the safety of field work- niques to calculate the location of rockburst
ers, and even cause serious accidentst?. occurrence, and so on. It is doubtful, how-
Therefore, prediction of the possibility of ever, that for most geologic conditions there
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will even be the capability to describe a geo-
logic environment or to fully simulate the
complexity of mechanical response in a natu-
ral system!*. In such an environment, the
geological models had to be simplified and on-
ly several main factors instead of the whole
set are considered as variables to set up a
function. Therefore, the actual situations
are variance from the predicted results from
these kinds of models because of simplified
processing. Insufficient knowledge of geolog-
ical features and lack of characterizing infor-
mation restrain these reported approaches
from achieving optimal results. A noisy ver-
sion of the cues may lead to a wrong predic-
tion or failure in predicting.

A more suitable technique for handling
this prediction problem is machine learning
and recognition based on neural networks.
A neural network is an intelligent informa-
tion processing system, with high nonlinear
dynamic features and considering various
governing factors as a whole without limit-
ing their quantity, by means of simulating
working ways of man’s nervous system such
as performance of perception recollection,
learning and reason. In the retrieving pro-
cess of neural networks, even if the features
used to describe the pattern are vague or im-
complete, this does not cause any difficulty
in most situations. Neural networks have
the potential to acquisit uncertain knowledge
from case histories and generalize to solve
similar problems.

In this paper we describe a novel ap-
proach to rockburst prediction problem using
machine learing and recognition based on
neural networks. The neural network predic-
tion system thus eatablished can let a geotech-
nical designer quickly access previous experi-
ence with similar excavations and identify
the most likely locations and intensities of
rockburst occurrence together with the key

geological features which affect these rock
bursings. In our network system, two neu-
ral networks are performing in cascade as
components; a neural network is first used
to predict location and intensity of rockburst
occurrence, and then another neural net-
work that uses this predictions and other geo-
logic features predicts measures to prevent
and control this probable rockburst.

2 NEURAL NETWORK LEARNING
FROM CASE HISTORIES

Our method of rockburst prediction is
performing based on learning and adaptive i-
dentification of neural networks. The predic-
tion of the occurrence and intensity of rock
bursting is implemented in two phases. First
a neural network learning engine was con-
structed to learn knowledge from case histo-
ries and contributed them on wvarious inter-
connections of the trained networks. Next,
a neural network recognizer performs asso-
ciative and adaptive identification of the loca-
tion and intensity of rockburst occurrence by
matching the pattern of the case at hand
with those patterns of geological features and
behavior of excavations in the trained net-
work and retricving the similar ones in a
very short period of time. This identification
procedure based on neural network learning
is shown in Fig. 1.

2.1 Neural Network Model

Inspired by neurologic investigations,
neural network models have been developed
to attempt to the nervous system and achieve
a human-like perfomance in many discipline-
s. These models are composed of many non-
linear computational elements operating in

parallel and arranged in patterns reminiscent
of biological neural net. Fig. 2 illustrates the
basic aspects of a neural net.
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Fig. 2 A multilayer feedforward neural network

Neural network models are specified by
the topology of the network, the characteris-
tics of the nodes ( i.e. nerves) and the pro-
cessing algorithm (learning rules). The intel-
ligent information properties of a neural net-
work arise from the above specifics. The
topology of a multilayer neural network con-
sists of several distinct layer of nodes (neu-
rons) including an input layer and an output
layer. The nodes in the input layer are re-
ceiving inputs from the outside world. The
nodes in the output layer are activated in a

pattern which responds to specific input pat-
terns. Between the input layer and the out-
put layer we have one or more layers of
nodes which are called hidden. The nodes in
the hidden layers, called hidden nodes, are
used to represent domain knowledge useful
Generally,
each node in one layer is interconnected with

for solving recognition tasks.

all the nodes in adjacent layers with connec-

tions, known as synapses. Each connection

is associated with a weight W; which mea-

sures the degree of interaction between the

corresponding nodes.

>0 If node u; excites u;

=0 If node u; has no direct
connection to node w;

<0 If node u, inhibits node u,

During a learing stage the weights are

W,

adapted to simulate the changing conduc-
tance of natural synapses.

2.2 Neural Network Learming Algorithm

Being different from the conventional
learning, neural network learning take place
when weights are adjusted. The goal of
learning is to minimize the error between the
desired outputs (target) and the actual out-
puts of the network. The learning is conduct-
ed by the back- propagation algorithm(*],
Back-propagation learning, more precisely
described as steepest descent supervised learn-
ing using back-propagation of error, is mak-
ing an initial estimation of weights and then
repeated revisions will be made based on gra-
dient descent operating. This learning is ter-
minated either whenever the total sum of the
squared errors between target and computed
output was minimized or when all patterns
produced the desired output with a prede-
fined acceptable error margin.

2.3 Improvement of Generality of Network
Learning Algorithm
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The following improving measures
were adopted to achieve better convergence
rate and generality for back- propagation
learning in our rockburst prediction system.

(1) Two-Level Networks

With decomposition of rockburst predic-
tion task, two networks were constructed in
cascade as components of the whole predic-
tion system: rockburst possibility prediction
neural network (RPPNN). and rockburst
prevention measure identification neural net-
work (RPINN). RPPNN predicts the loca-
tion and intensity of rock bursting, and this
is fed together with other features to the
RPINN to produce the prediction of mea-
sures of controlling rockbursts. A block dia-
gram of two- level networks for rockburst
prediction system is shown in Fig. 3.

This cascading processing overcomes
the construction of more complex network so
that the system has achieved good conver-
gence rate and adaptation. This emphasises
the fact that methods of controlling rock-
butrst should correspond to the intensity of
probable rock bursting as well.

(2) Afferent and Efferent Transforma-
tion

The data dealed in rockburst prediction
tasks include qualitative representations and
numerical values. The qualitative representa-
tions were transformed into numerical val-
ues which the network can accept by using a
constructed afferent rule. For example,
limestone in lithological type defined as 1,
sandstone defined as 2 and so on. The nor-
mal output is in [0,1]. An inverse transfor-
mation based on efferent rule was performed
to translate this normal outputs in [0, 1] in-
to what we wanted to express. This afferent
and efferent processing may bring many geo-
logical factors and qualitative engineering/

mining informatio into network learning and
identification without any difficulty.
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Fig. 3 Block diagram of two-level neural
networks for rockburst prediction system

(3) Normalization of Input Data

The normal inputs of network are be-
tween 0 and |. Note this process will impose
a limit of the maximal size of input data.
This limitation is not desirable and may be
overcome by normalizing the data to very
large values of features.

The formula is written by

Xu — min(X;;)
J

Xllr -
max (X,) — min(X,,) (D
? J
(= 1,yecymzk = 1,0+ ,m)
where  m is the dimensions of the input vec

tors, n is the number of samples.
(4) Suitable Network Architectures
The performance of neural network
recognition is related to the topology of the
network. Once the number of neurons on
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the input layer and output layer was de-
signed for a specific task the performance of
network is affected by the number size of
hidden layer. Many number of hidden layer
and many number of nodes per hidden layer
were evaluated to gain better performance.
Weights of connections between two
nodes in adjacent layer are referred to as
hard weights or soft weights. The hard
weights are defined to be 0 to indicate that
they are a fixed or ” hard-wired” part of the
architecture.
cate that there is no inference between two

These hard connections indi-

nodes. The soft weights, used as the repre-
sentation of domain knowledge, have the po-
tential for modification during learning. The
size of soft weights represents connection
strength between nodes.

2.4 Learming Knowledge From Case Histories

More than 201 case histories have been
collected from 25 underground coal mines
and hydroelectric tunnels in China and used
as learning patterns. The openings were cho-
sen so as not to bias the network toward any
sectional shapes (circle, semi-circle arch +
straight wall, horse-shoe etc. ) or excava-
tion type (hydroelectric tunnel, gang- way
in coal mine, extraction drift etc. ). Fea-
tures are extracted from learning patterns
and used to train two multilayer networks us-
ing gradient descent. The network structure
adopted is shown in Fig. 4.

The inputs to the rock burst possibility
prediction neural network are the following:

Litho-type—Lithological type;

H —Overburden of underground open-
ings;

o. —Uniaxis comprehensive strength of
rock;

0, —Tensile strength of rock;

g9 —Tangential stress of rock surround-

ing openings;

E —Young's modulus;

Wegr —Elastic energy index of suround-
ing rocks, which is the elastic-energy-to-dis-
sipated-energy ratio;

f —Separation angle between the
strike of main joint set and maximal princi-
pal stress;

K, —Intact coefficient of rockmass;

Sec-shape—Sectional shape of under-
ground openings;

Water—Groundwater conditions (dry,
wet, minor inflow (< 5L/min), medium
inflow etc. ).

The inputs to the RPINN are both the
inputs and the outputs of the RPPNN. It is
interesting to note that the content of these
parameters will be expanded with further un-
derstanding of rockbrurst mechanism and the

Possibility of ( Control measures
rock bursting of rockbursts

(Geological features) G:‘.ngineerf'ng/mining)
information

Fig. 4 The Structure of rockburst prediction
and control neural network

further analysis of more case histories.

The outputs of the RPPNN and the
RPINN are two ploting- point wvalues be-
tween 0 and 1 representing the predicted lo-
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cation and intensity of rockbursts and their
prevention measures respectively.

At learning stage, each pattern is first
randomly presented to the system as input
and target vectors. and then the repeated rep-
resentation of each pattern is done with suc-
cessive adjustment of weights. Learning is
terminated when all learning patterns pro-
duced target patterns which fell within a
margin. Knowledge thus learned are repre-
sented by stable weights and topology of net-
works for the use of the network recognizer
of

in evaluating new sets

analysing new patterns.

inputs and

3 NEURAL NETWORK RECOGNITION

Here, we make use of the capability of
neural networks to generalize to predict the
possibility and prevention measures of rock-

bursts which have no seen previously using
knowledge learned from learning patterns.

This prediction procedure is also called asso-
ciative inferrence and adaptive recognition
operated by trained neural networks.

New case records, which total 10, are
collected to be used as recognizing patterns
of the network recognizer. Features of these
patterns are shown in Table 1 and presented
to the system as inputs. The possibility of
rockburst occurrence recognized by the
RPPNN is given in Table 2. On the basis of
recognition of probable rock bursting the
RPINN suggests some practical methods for
prevention and mitigation of rock bursts (see
Table 3). The identifying results showed
that a rockburst prediction accuracy of
100% was reached with these two neural
network recoghnizers.

Table 1 Data Of Cases Used As Inputs Of The Network Recognizer
Ca Lithological Overburden o./ o,/ o/ E X 10 - Section Groundwater
568 type /m MPa MPa MPa /MPa o B shape inflow
Dolomitic .
1 . 225 88.7 3.7 30.1 5.6 6.6 10 0.93 Circle Dry
limestone
2 Sinaite 194 220.0 7.4 90.0 5.9 7.3 10 0.85 Circle Dry
3 Granite 3756 171.5 6.3 18.8 5.7 7.0 45 0.60 A- Wet
4 Limestone 435 149.0 5.9 34.0 6.5 7.6 75 0.63 Circle Minor inflow
Clay . .
5 250 53.0 3.9 38.2 1.2 1.6 89 0.80 A* Minor inflow
sandstone
6 Marble 100 90.0 4.8 11.3 5.3 3.6 75 0.79 A- Dry
7 Limestone 300 263.0 10.7 92.0 7.9 8.0 11 0.93 Circle Dry
8 Diorite 330 235.0 9.5 62.4 7.2 9.0 15 0.87 Circle Dry
9 Granite 223 136.5 7.2 43.4 3.4 5.6 21 0.93 A- Dry
jo Diastatite 425 105.0 4.9 1.0 9.7 4.7 58 0.75 A Wet
anorthose

A* =Barrel vault and line wall
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Table 2 The Possibility Of Rockburst Occurrence Recoginzed by The RPPNN

Degree of activation

Descriptions
Case ]| Case 2 Case3 Cased4 Case5 Case 6 Case 7 Case 8 Case 9 Case 10

1 Location Sre::: of 0.001 0.000 0.000 0.000 0.000 0.000 0.003 0.993 0.987 0.000
of Left of crown 0.007 0.009 0.001 0.000 0.000 0.000 0.975 0.007 0.001 0.000
Left of crown
rockburst and its . 0.998 0.989 0.000 0.000 0.000 0.000 0.009 0.998 1.000 0.000
symmetric
place
Springline 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

Above spring- 400 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

line

Right of 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O0.000
foot-arch
Foot-arch 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 O0.000

Enter section 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 Rockburst None 0.000 0.000 1[.000 0.000 1.000 0.998 0.000 0.000 0.000 1.000
intensity  Light 0.000 0.000 0.000 0.997 0.00t 0.003 1.000 0.008 0.003 0.000
Moderate 0.009 0.001 0.000 0.003 0.000 0.000 0.003 0.008 0.003 0.000

Heavy 0.999 1.000 0.000 0.009 0.000 0.000 0.000 0.995 0.989 0.000

Table 3  Practical Methods For Prevention And use of the capability of neural networks to

Mitigation Of Rockbursts Suggested By The RPINN  geperalize. The predicition task is carried out

Rockbust Degree of activation by two neural nctwork subsystems in cascade
control

Case § Case 2 Case 3 Case 4 Case 7 Case 8 as components; The RPPNN predicts intensi-

i e roc .

?XFJZLn 0,000 0.000 0.000 0.000 ©.000 O.000 ty and location -of pro-ba.bl ockbursts. The

RPPNN uses this prediction together with an-
Auger . . . .
driling 0.998 0.998 0.000 0.999 0.001 0-999  ,ther geological features to identify practical
dAulser N measures to prevent and mitigate probable
rilling B .
permissiple 0 003 0-0310-000 0.000 0.991 0.000  ro0k pyrsts. This system has been implement-
explosives . . .

ed as the first stage of an opening assistance
Bolt 0.007 0.001 0.993 0.001 0.000 0.000

Shotocrete  0.000 0.001 0.931 0.003 0.010 0.009 design system. The system is writien in a
high-level computer language, which is
called GCLISP.

A more important features of this sys-

Bolt-web-

0.973 0.993 0.009 0.000 0.021 0.945
shotcrete

4 CONCLUSIONS tem is that it is capable of continuously learn-
ing of adaptation by adding new data to the

We have presented a novel approach to existing data set and retraining. This capabili-
solve complex problem of predicting probable ty is very important for complex rock me-
rock bursts. Our approach is based on ma chanics problem solving, particularly, when
chine learning by nerual networks. It makes input data is limited and new geological condi-
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tions are continuously encountered. Further-
more, employing this learning approach can
reduce the difficulty of problem solving in
complex rock mechanics environment where
insufficient knowledge often occurs and that
of knowledge acquisition.

Another more important feature of this
system is its content- addressability. This
property is valueable for the domain of data-
limited rockburst prediction and rock opening
design because it can help designer determine
default values of geologic features and cor-
rect incorrect parts of the content of a pat-
tern.

The identification of probable rockburst
of new cases is made by adaptive and associa-
tive reason of neural networks. The degree
of activation of an output node of a certain
neural network generated by the system re-
flects quantitatively its relative importance.
This property will allow predictors to quickly
assess the best suitable measures of con-
trolling rockbursts or the controlling parame-

ters for further detailed analysis.
Furthermore, to the best of our knowl-
edge this has been the first attempt at predict-
ing the possibility of rockburst occurrence us-
ing machine learning based on neural net-
works. We will need to consolidate our re-

sults by further testing on a larger test set.
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be convenient to the user, but also decrease
the calculation cost greatly.

(3) For the Xishimen Iron Mine, the
optimum panel mining sequence at the ob-
jecitve of rock mechanics is ; Panel I front
to Panel T, Panel Wl front to Panel N,
Panel N front to Panel V , which form the
benched working line that is oblique to the
strike of the orebody.
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