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ABSTRACT

Based on the rheologic features of non-Newtonian materials, an equation of the draw-

ing under the lubrication of non-Newtonian lubricating material through upper-bound analysis was pre-
sented. The equation includes the theoretical results of Avitzur B under the lubrication conditions of in-
varicant fricition factor hydrodynamic lubricating, and an optimum thickness-diameter ratio is proposed,

which is important for practical application.
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1 INTRODUCTION

In drawing thread, wire, and bar, ox-oil
lime, soap, grease are usually used as lubri-
cating materials, a layer of desiccated lubrica-
tion is thus formed on the surface of drawing
blank. Most of the available calculating equa-
tions of the drawing force are derived assum-
ing that the friction between the drawing
blank and the die coincides with Coulomb’s
law, or assuming that the invaricant tangen-
tial stress factor is far from steel wire produc-
tion process, so they could not fit the practical
production. In recent years, Avitzur has
achieved many results through analysing metal
forming process using hydrodynamic lubrica-
tion™), The analysis of drawing force taking
into consideration the effect of the friction fea-
ture of surface lubrication coating is still open
to be fulfiled. This paper will give some re-
sults on the research of this problem using the
method of rheology and tribology.

2 KINEMATICALLY ADMISSIBLE
VELOCITY FIELD

As shownin Fig. 1, the deformation zone
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Fig. 1 Illustration of deformation zone

(zone 2) is shaped like an arch; the center of
the bar enters the deformation zone earlier
than outer. The fricitional resistance to outer
metal is larger than that of inner, therefore
the inner metal flows fast, and outer metal
flows slow. Because the cylindrical bar drawn
in the conical die is deformed axial-symmetri-
cally and not epicyclic-twisting, metal mass
points on the symmetric-axial flow along the
axial direction, and other metal mass points
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flow along conical generating line of deforma-
tion cone to the vertex of cone. As shown in
Fig. 2 assuming at metal mass point flowing
velocity in any point of deforming cone is a-
long the diameter-direction and joins at the
vertex of cone. Zone 1 and zone 3 are rigid
zones, they move rigidly along axial direction
with velocities of v, and v; respectively. Ac-
cording to the conservation law of metal vol-
ume, we have

v, = v (R¢/Ry)? QD)

In order to simplify mathematical analy-
sis, I'yand I', are treated as surfaces of con-
centric spheres whose centers are o and radii
are r, and 7;. After one point of rigid zone one
moves along axial-direction on to the spherical
surface I', with the velocity v,and enters defor-
mation zone 2, it flows along diameter-direc-
tion to the spherical surface I'). And then

Fig. 2 Velocity field

the metal mass point leaves zone 2, enters
rigid zone 3, moves along axial-direction with
velocity vy,

Therefore, I'; and I', are velocity discon-
tinuous surfaces. The female die is fixed on
the carrier and keeps stationary, the tangen-
tial velocity is discontinuous on the conical
surface I'; and I',, the normal velocity equals
zero constantly. As shown in Fig. 2, using

Avitzur B spherical centripetal velocity field,
the velocity discontinuity in spherical coordi-
nates(r, ¢, ) isl** 2,

Velocity field
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Zone 1: Vo
Zone 2. U, = v = — vpricosl/r?

U,=U, =0 2
Zone 3 v
Velocity discontinuity
Surface I';; Av, = v; sinf
Surface I',; Av, = v, sind
Surface I';;  Av, = vt cosf/r? (3

Surface I', Ay, = vy

3 DEFORMATION POWER

The deformation powers in zone one and
two are zero, because they are all rigid zones.

Zone two is symmetrical about ¢ axis, and
the strain velocity is
€, = J], = zéw =
” o
— 2€4 = 2vgricosl/r, 4)

&5 = (1/2)vitsind/r,

Epp = Ep =0

Any particle in zone two moves along ra-
dial direction and has a constant angle #, then
eq. (4) becomes €,, 1€y €,3€,,1E416, = 1t — 21
— 2:1/4:0:0, which mdlcates proportional
straining. The lubricating layer’s thickness at
the exit is €, the radius of the cylinder part of
the die is R, and when the product’s radius is
Ri-¢, substituting (5) by eq. (4) gives'®

, 2 /l .
W = ﬁa,L o i€ dv 5)

The deformation power in zone 2 is

W = 2no,u(R; — e)zf(a)ln(

2 (6)

where

f()_m{l—cosa.ll—usma—i—
l[(1+4/ )—
/u [,
( 1zcosa—|— 1 1251na):|}
4 EXHAUST POWER

(1) Powers exhausted to velocity discon-
tinuity surface I'; and I,
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tAvds =

Wsl. 2 = J
r+r,
2/ v 3)o.mu (R, — €)? X
(a/sin’a — ctga) ¢

(2) Power exhaused by fricition;

The lubricating grease is non-Newtonian
material, the rheology’s features of which can
be represented by 5 ¢!

t=r1,+ )" (8
where r, —vyield stress; ¥ —shearing strain
rate; T —shearing stress; @, n —constants.
As shown in Fig. 3, when v, =0, eq. (8) rep-
resents pseudoplasticity and expansible fluid;
when n = 1, eq. (8) is Newtonian fluid, @ is
kinetic viscosity; T = 7, + ®(¥)" represents
plastic body, or Bingham body. When sheer-
ing stress exceeded 7., flowing occurred. If r

= 1, = mo,/ ¥ 3 is assumed, that is the as-
sumption of invaricant fricition factor, m is
fricition factor( 0 <Cm << 1 ). Therefore, it is
concluded that eq. (8) is of universal signifi-
cance.

o Y

Fig. 3 Shearing strain rate (7 )
versus shearing stress ()
1—Grease; 2—Pseudo-plasticity; 3—Expansible;
4—Newtonian body; 5—Plasticity

The velocity distribution rule of lubricat-
ing layer is that the velocity of lubrication ad-
hering to the surface of the female die is zero,
and that the flowing velocity of lubrication ad-
hering to the surface of the bar blank equals
the velocity of the surface mass point of the
bar;

v = vgricosa/r?

If the lubricating layer’s velocity is linear-

ly distributed along the lubricating layer’s
thickness, the average velocity of the lubricat-
ing layer will be

v = (1/2)vgrfcosa/r? €D

When flowing through a ring region,
with a radius of R = r sina  and a gap of A,
the lubricating layer’s flowing rate is

V, = 2 nrhusina 10)
The conical part of the female die is r = 7, the
lubricating layer’s thickness A is

h; = €/cosa an
Because of the constancy of the lubricating
layer’s volume, we can get the function of the
lubricating layer’s thickness  from egs. (10)
and (11)

= hg/r; = er/(r; cosa) 12)

The total consumed power on the lubricating
layer’s volume is

W,=Jr|Av|ds a3
where
r=1, + ®)"

Av = v = vpicosa/r? = v;(R;/R)*osa,
h = (r/r;) (¢/cosa) = (R/R;) (g/cosa),
ds = 2nR dR/sina, ¥ = Av/h,

RO .
WSS = J‘R [:Ts + ¢(7)"]A'U2KRC1R -

sina = 2nctga v R {z,In(R,/R;) +
®/(3n) vicos®a/e'[1 — (R/Ry)* ]}

a4
The fricition consumed power of cylindrical
surface is
W, = t,02nR L + O (viT' /) 2nRL =
2xR Lv[7, + (vi/e)"P] s

5 DRAWING POWER

(1) Drawing force power
J* = mui(Ry — €)foy ae
(2) Post-drawing tensile force power

Wb - - J T,"U,'ds -

v R0, = muRio, an

6 FORMULA INFERENCE

According to the upper-bound law!* 2},
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__2 [1: ¢
= ﬁa,L 5 &6, dv +

J t|Av|ds — J‘ Twds as)

Substituting R; in egs. (14), (15) and (17) to
Ri-€, and substituting (18) by eqgs. (16), (6),
(7) gives

O O'Ib

s = DT
/i?—(sizza — ctga) + £ 2 Zrex
{ctga?:;os "aEl N ( )3"] +
R R L— € +
ctga lnR — e] a

From eq. (19) we can see that o rises,
when € reduces, the inner deformation power
rises when € raises. Taking 0. as a function of
€ seek optimum &,.

Let A = R,/R;, B= L/R;, X = ¢/R,,
then eq. (19) can be written as
O zb
= = -l— Zf(a)ln x +—F—=X
2, /?
a 2@ Ut "_ :
(sinza — ctga) + _(R ) X"
ctga cos™a-. 1 2n
(gecostepy  (L=Xyuy 4
B 2r, B
—x toli=x"
ctga ln 7 f X] (20)

Derivation of X in eq. (20) and let it equal
zero, considering that X is very small, 1 — X
2~ 1, optimum X, is obtained

X, =

ctga cos™a T

T — 2D+ B

)’l
f(@ + (B + ctga)

(

Rf T

@D

& = RX, (22)

Substituting eq. (20) by eq. (21), we can
get the minimum stretch stress. Wistreich ]
G™ proved that. The metal wire’s radius at
exit is smaller than the female die’s radius,
and the difference is lubricating layer’s thick-
ness €,

7 CONCLUSIONS

(1) Whenz, = 0, ® =79, n = 1, egs.
(20) and (21) change to Avitzur B result un-
der the hydraulic lubrication condition.

(2) When r, = mo,/ ¥/'3, ® = 0, eq.
(20) changes to Avitzur B conclusion under
the lubrication condition of the invaricant
fricition factor.

(3) According to eq. (20), we can get the
drawing force under the lubrication of grease
and soap. From eq. (21), we can get the opti-
mum ratio between lubricating layer’s thick-
ness and female die’s radius at exit. Eq. (20)
is more general, it includes Avitzur B results
as special cases.
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