2020 年 10 月 October 2020

DOI: 10.11817/j.ysxb.1004.0609.2020-35903

LiF-LaF₃-La₂O₃熔盐体系的电导率

陈淑梅^{1,2},洪侃²,伍昕宇¹,梁鑫²,廖春发¹,陈东英²

(1. 江西理工大学 材料冶金化学学部, 赣州 341000;2. 赣州有色冶金研究所, 赣州 341000)

摘 要: 在制备 La-Cu 中间合金方法的基础上,采用连续改变电导池常数法(Continuously varying cell constant, CVCC)研究了 LiF-LaF₃-La₂O₃ 熔盐体系的电导率,运用 Arrehnius 方程计算了熔盐体系的电导活化能,并采用最小二乘法对数据进行拟合,建立了温度、LaF₃ 含量(质量分数)、La₂O₃ 含量与熔盐电导率之间关系的回归方程。结果表明:熔盐体系的电导率随温度的升高而增大,随 La₂O₃ 含量的增加而增大,随熔盐中 LaF₃ 含量的增加而减小。熔盐电导率与温度(t)、La₂O₃ 含量(w(La₂O₃))、LaF₃ 含量(w(LaF₃))的关系可以表示为 k=-1.54114+0.00794t-0.03704w(LaF₃)+0.10839w(La₂O₃),从而可以确定电解 LiF-LaF₃-La₂O₃熔盐制备 La-Cu 合金较为理想的条件如下: 80.0%≤w(LaF₃)<85.0%, 1.0%≤w(La₂O₃)\le 2.0%,电解温度应控制在 960~980 ℃。

关键词: 电导率; 熔盐体系; La-Cu 合金; La₂O₃

文章编号: 1004-0609(2020)-10-2427-08

中图分类号: TF845.6

文献标志码:A

目前应用的铜合金,因杂质含量较高(0.05%~ 1.0%,质量分数),导致其性能无法满足高端市场要求, 因而开发出具有优良综合性能的铜合金材料,成为目 前急需研究和解决的课题。研究表明,在铜及其合金 中添加稀土元素,能有效改善铜及其合金的物理、力 学性能^[1],其中在铜及其合金中掺入适量的高丰度稀 土元素镧,能起到提高抗拉强度及导电性,改善合金 表面光泽度及材料的微观组织结构等作用。因此, La-Cu 合金可作为高性能铜及其合金的优良新型添 加剂,并且作为高导电材料应用前景非常广阔^[2]。基 于熔盐电解法制备稀土金属及合金具有成分易控制、 操作便利等优点,论文作者在氟盐体系下,采用自耗 铜阴极熔盐电解 La₂O₃探索性的制取了 La-Cu 中间合 金^[3-4]。

熔盐的物理化学性质是优化电解工艺参数的重要 依据,也是研究电解机理和熔融盐结构所需的基础性 数据,其中,电导率是熔盐最重要的物理化学参数之 一。关于 La-Cu 合金的研究报道,主要集中在电解 La-Cu 合金的机理研究,与制备 La-Cu 中间合金熔盐 体系盐物理化学性质相关的研究鲜见报道^[5]。由于熔 盐的电导率和熔盐中离子的迁移数存在密切关系,因 此熔盐的电导率,理论上可以确定熔体中离子迁移机 理,了解熔体的结构^[6-7],在实际生产中,电导率对降 低能耗、强化生产有着十分重要的意义^[8-10]。

就电导率而言,制备金属及合金的氟盐体系电导 率报道主要有: 胡宪伟等^[11-12]研究了 NdF₃-LiF-Nd₂O₃ 熔盐电导率与温度、熔盐组分的关系,发现熔盐电导 率随着温度和熔盐中 LiF 加入量的增加而增大,而随 着 Nd₂O₃ 加入量的增加而减小; 廖春发等^[13]考察了 Na₃AlF₆-AlF₃-LiF-MgF₂-Al₂O₃-Nd₂O₃-CuO 熔盐体系电 导率与温度、熔盐组分之间的关系,发现当温度升高 或 CuO 含量增大时,熔盐电导率增大,而当 Nd₂O₃ 和 Al₂O₃含量增大时,熔盐电导率则逐渐减小; BAO 等^[14]分析了 NaF-AlF₃-Al₂O₃-CaF₂-ZrO₂ 熔盐体系的电 导率与 ZrO2 含量、NaF/AlF3 摩尔比的关系; CHEN 等^[15]研究了 LiF-DyF₃-Dy₂O₃-Cu₂O 熔体的电导率,结 果表明熔体的电导率随单一氧化物(Dy₂O₃或 Cu₂O)、 混合氧化物(Dy₂O₃与 Cu₂O)加入量的增加而增大,随 温度的升高而增大; ZHU 等^[16]研究了 REF₃-LiF 熔融 盐的电导率与温度和熔盐组成的关系,发现熔盐电导 率随 REF3含量的增加而降低,随温度升高而增大。

分析国内外氟化物熔盐电导率可知,目前并未发

基金项目:国家自然科学基金资助项目(51674126);江西省重点研发计划资助项目(20192BBE50027)

收稿日期: 2019-12-21; 修订日期: 2020-03-20

通信作者:廖春发,教授,博士;电话:0797-8312215; E-mail: Liaochfa@163.com

现关于 LiF-LaF₃-La₂O₃ 熔盐电导率的系统研究。因此, 本文运用连续改变电导池常数法(Continuously varying cell constant, CVCC)系统研究深入的温度、LaF₃ 与 La₂O₃ 含量对熔盐体系电导率的影响规律,并建立温 度、LaF₃和 La₂O₃ 含量与熔盐电导率的回归方程,以 期为熔盐电解工艺技术的改进提供基础理论数据。

1 实验

1.1 实验原材料

实验所用的 LiF(纯度≥98%)为化学纯, LaF₃、 La₂O₃均为工业纯, 其中 LaF₃、La₂O₃由江西南方稀土 高技术股份有限公司提供, LiF 由国药集团化学试剂 有限公司提供。将 LiF、LaF₃、La₂O₃按所需配比配制 成 300 g 的试样,并混合均匀,再在 300 ℃下烘干 10 h 备用。

1.2 实验方法

在温度为 950~1030 ℃(步长为 20 ℃)范围内,分 别研究 LiF-LaF₃ 熔盐体系及 LiF-LaF₃-La₂O₃ 的电导 率。其中 LiF-LaF₃ 基础熔盐中 LaF₃ 的质量分数为 75%~85%, La₂O₃加入量为 1.0%、2.0%、3.0%,熔盐 体系的成分组成如表 1 所示。

表1 熔盐体系的组成

Table 1 Composition of molten salt system investigated

System	m(LiF)/g	m(LaF ₃)/g	$m(La_2O_3)/g$
LiF-LaF ₃	а	b	_
LiF-LaF ₃ -La ₂ O ₃	а	b	(0%−3.0%)×(<i>a</i> + <i>b</i>)

电导率测量装置为 RTW-10 型熔体综合物性测定 仪,见文献[17],主要包括高温炉、钼电极测头、 TH2810DLCR 数字电桥测试仪及计算机控制系统等。

用连续改变电导池常数法(Continuously varying cell constant, CVCC)测定 LiF-LaF₃-La₂O₃熔盐体系的 电导率,操作步骤为:1)把装有样品的石墨坩埚放入 直径比石墨坩埚稍大的碳化硅坩埚中以固定石墨坩埚,再把碳化硅坩埚放入熔体测定仪的高温炉膛内; 2)通电并通过熔体测定仪配套的计算机控制系统设 定炉体温度,升温至预设温度后恒温 20 min;3)采用 计算机控制系统控制高温炉体的升降,并将 TH2810DLCR 数字电桥测试仪与钼电极连接测量熔 盐的电阻,钼电极测头插入被测熔盐深度不同,所测 熔盐电阻不同(系统会精确控制钼电极测头插入熔盐 液面的距离,并测定多个电导池系统的多个电阻值), 再通过计算机控制系统进行数据分析计算得到熔盐的 电导率。

为了保证连续改变电导池常数法测量电导率的准确性,实验前在 800 ℃下,用 KCl 熔盐对电导池常数进行标定,测得 KCl 熔盐电导率为 2.254 S/cm,与GRJOTHEIM 等^[18]的电导率 2.237 S/cm 偏差 0.76%,表明采用该方法测定熔盐电导率是可信的。

1.3 电导活化能的计算

熔盐电导与温度的关系满足 Arrehnius 方程,完成 不同温度下熔盐的电导率测试后,进而可以通过 Arrehnius 方程进一步研究熔盐的电导活化能。 Arrehnius 方程表达式如下^[19]:

$$k = A \exp\left(-\frac{E_k}{RT}\right) \tag{1}$$

式中: *k* 为熔盐的电导率, S/cm; *A* 为指前因子, S/cm; *E*_k是电导活化能, kJ/mol; *R* 为摩尔气体常数, 8.314 J/(mol·K); *T* 为热力学温度, K。对于特定组成的熔盐, 指前因子 *A* 和电导活化能 *E*_k 都是常数。

对式(1)两边取自然对数得

$$\ln k = \ln A - \frac{E_k}{RT} \tag{2}$$

由式(2)可知, $\ln k = T^1$ 之间应具有线性关系, 直线的截距为 $\ln A$, 斜率为 E_k/R 。根据电导率与温度 的线性回归方程可以计算出特定熔盐组成的电导活化 能 E_k 和指前因子A。

2 结果与讨论

2.1 温度对熔盐电导率的影响

在温度为 950~1030℃(步长为 20℃)范围内,分别 研究温度对 LiF-LaF₃、LiF-LaF₃-La₂O₃ 熔盐体系电导 率的影响,如图 1 所示。LiF-LaF₃ 熔盐体系中 75% $\leq w(LaF_3) \leq 85\%$; LiF-LaF₃-La₂O₃ 熔盐体系中 0 $\leq w(La_2O_3) \leq 3.0\%$; w(LaF₃)、w(La₂O₃)分别表示熔盐 中 LaF₃、La₂O₃的质量分数。

由图 1 中各曲线可以发现, LiF-LaF₃、LiF-LaF₃-La₂O₃ 熔盐体系的电导率都是随温度的升高而增大; 熔盐组分相同时, 熔体温度每升高 20 ℃, 熔盐电导率 平均升高 0.15~0.21 S/cm,这与以往的研究结果^[11-12,20]一致。这是因为随着熔盐温度升高,离子的动能增大, 离子间的吸引力更容易被克服,离子的定向迁移能力 增强。此外,随着熔盐温度的升高,熔盐体系的黏度 下降,离子和自由电子运动时受到的阻力减小从而使 得电导率的增大^[21]。

为了验证所测得的电导率是否符合 Arrehnius 方程,将图1中数据进行处理并绘制 ln *k* – *T*⁻¹ 关系图,再对其进行线性拟合,结果如图2所示。

由图 2 可知, $\ln k = T^{-1}$ 有较好的线性关系, 线性 相关系数 R_r^2 都大于 0.95。根据式(2), 结合图 2 中拟 合的线性回归方程, 计算所得不同熔盐组成时指前因 子 A 与电导活化能 E_k 数值列于表 2。

从表 2 可以看出,熔盐体系的电导活化能 E_k 为 29.85~33.72 kJ/mol。对于 LiF-LaF₃-La₂O₃熔盐体系, 当熔盐中 LaF₃含量一定时,随着熔盐中 La₂O₃含量的 增加,电导活化能 E_k 呈下降的趋势。

2.2 LaF₃含量对熔盐电导率的影响

在温度为 950~1030 ℃范围内,考察在 LiF-LaF₃-La₂O₃ 熔盐中 LaF₃含量分别为 75%、80%、85%时,LaF₃含量对熔盐电导率的影响,所得电导率的线性拟 合图如图 3 所示。

图 3(a)、(b)、(c)所示分别为 La₂O₃添加量为 0、 1%、2%、3%时,不同LaF3含量下熔盐的电导率图。 由图 3 可知,在相同温度和相同 La2O3 添加量下, LiF-LaF₃-La₂O₃熔盐的电导率随 LaF₃质量分数的增加 呈线性减小,且 LaF3含量每增加 5%,熔盐电导率平 均减小 0.13~0.22 S/cm。研究结果与相类似的稀土氟 化熔盐 CeF₃-LiF, SmF₃-LiF 以及 YF₃-LiF^[22]电导率相 比较,可以发现稀土氟化物熔盐电导率变化规律相似。 这是因为,随着熔盐中LaF,含量的增加,熔盐中半径 较大的阳离子 La³⁺增多,在电场的作用下,熔盐中阳 离子移动时所受的阻力增大,离子迁移率降低,电导 率减小。另一方面,相同温度和相同 La2O3 添加量下, 随着熔盐中 LaF3含量的增加,熔盐黏度增大,故提高 熔盐中 LaF3含量,熔盐电导率减小。此外,文献[23] 表明,随着熔盐中LaF3含量的增加,熔盐中将生成大 量体积较大的 LaF_4^- 、 LaF_5^{2-} 、 LaF_6^{3-} 等离子团增加, 促使熔盐的电导率减小。

2.3 La₂O₃含量对熔盐电导率的影响

在温度为 950~1030 ℃范围内,考察在 LiF-LaF₃ 熔盐中 La₂O₃ 含量分别为 0、1%、2%、3%时(La₂O₃ 溶解度范围内),La₂O₃ 含量对熔盐电导率的影响,所得电导率的线性拟合图如图 4 所示。

图1 温度对LiF-LaF₃-La₂O₃熔盐体 系电导率的影响

Fig. 1 Effect of temperature on conductivity of LiF-LaF₃-La₂O₃ molten salt system: (a) $w(LaF_3)=75\%$; (b) $w(LaF_3)=80\%$; (c) $w(LaF_3)=85\%$

表 2 不同熔盐组成时指前因子 A 与电导活化能 E_k

Table 2A and E_k values of molten salt under different compositions

System	w(LiF)/%	w(LaF3)/%	w(La ₂ O ₃)/%	$A/(\mathrm{S}\cdot\mathrm{cm}^{-1})$	$E_k/(\mathbf{kJ}\cdot\mathbf{mol}^{-1})$
LiF-LaF ₃ -La ₂ O ₃		75	0	60.82	29.85
	25		1	64.60	30.19
	23		2	68.13	30.34
			3	67.31	29.94
LiF-LaF ₃ -La ₂ O ₃			0	65.76	31.28
	20	80	1	48.32	27.73
	20	80	2	54.54	28.68
			3	43.71	26.01
LiF-LaF ₃ -La ₂ O ₃		85	0	78.91	33.72
	15		1	69.58	32.03
	15		2	71.41	32.02
			3	58.62	29.63

图 4(a)、(b)、(c)所示分别为 LaF₃含量为 75%、 80%、85%时,不同 La₂O₃含量下熔盐电导率的线性 拟合图。从图 4 可以看出,在相同温度下, LiF-LaF₃-La₂O₃熔盐的电导率是随着 La₂O₃含量的增 加而增大,并基本呈线性关系,但与温度、LaF₃含量相比,La₂O₃含量对熔融盐的电导率影响较小。这是因为随着La₂O₃的加入,La₂O₃将与熔盐中的氟离子发生反应形成La-O-F络合离子团,反应方程式如

Fig. 3 Effect of LaF₃ content on conductivity of LiF-LaF₃-La₂O₃ molten salt system: (a) $w(La_2O_3)=0$; (b) $w(La_2O_3)=1\%$; (c) $w(La_2O_3)=2\%$; (d) $w(La_2O_3)=3\%$

3.0

下[24].

$$La_2O_3 + LaF_x^{(x-3)-} + 2xF^{-} = 3 LaOF_x^{(x-1)-}$$
(4)

$$La_2O_3 + 4 LaF_x^{(x-3)-} = 3 La_2OF_x^{(x-4)-} + xF^-$$
(5)

由方程式(3)~(5)可知,随着 LiF-LaF₃ 熔盐中 La₂O₃ 的加入,熔盐中将生成新的络合离子团 LaOF_x^{(x-1)-}、 La₂OF_x^{(x-4)-}。随着 La₂O₃含量的增大,这些离子团数 目也将增加,即熔盐中离子团数量和种类增加,致使 熔盐中传递电荷的离子数增多,熔盐导电性增大。但 是由于这些离子团体积较大,容易使熔盐黏度也增大, 因此,相比温度和 LaF₃含量而言,La₂O₃含量对熔盐 电导率增大的影响较小。

2.4 电导率回归数学模型

考虑温度、LaF₃含量、La₂O₃含量等因素对 LiF-LaF₃-La₂O₃熔盐的综合影响,将上述试验所获得 的电导率进行多元一次线性回归分析,建立 LiF-LaF₃-La₂O₃熔盐体系电导率的数学模型,方程如 下所示:

 $k=-1.54114+0.00794t-0.03704w(LaF_3)+$

 $0.10839w(La_2O_3)$

方程(6)线性拟合系数为 0.9737, 其适用范围为: t 为 950~1030 ℃, w(La₂O₃)为 0~3.0%, w(LaF₃)为 75.0%~85.0%。

由建立的密度回归方程可知,在 LiF-LaF₃-La₂O₃ 熔盐体系中,熔盐电导率随温度的升高、La₂O₃含量 的增大而升高,这将有利于提高电流效率,同时能促 进制备的液态 La-Cu 合金与熔盐分离;熔盐电导率随 熔盐中 LaF₃含量的增大而减小,这将增大能耗,降低 电流效率。在熔盐电制备稀土金属及其合金过程中, 通常会提高电解温度以促进液态金属与熔盐分离,然 而电解温度过高,熔盐挥发严重,电解槽易腐蚀,因 此电解过程需合理控制电解温度。本文采用自耗铜阴 极制取 La-Cu 合金,综合考虑电导率和铜的熔点,电 解温度应控制在 960~980 ℃较为合理。

分析图 1~4 可以发现: 1) 熔盐中随 LaF₃含量增 大,电导率降低,熔盐黏度增大,不利于电解的正常 进行,所以电解时熔盐中 LaF₃含量应控制在 w(LaF₃)< 85%; 2) 熔盐电导率随 La₂O₃含量的增加而增大,但 当熔盐中 La₂O₃含量 w(La₂O₃)≥2.0%时,La₂O₃完全溶 解于熔盐中需要一段时间,部分 La₂O₃容易沉结于底 部。因此,从 LiF-LaF₃-La₂O₃ 熔盐体系电导率角度来 看,熔盐中 LaF₃含量应控制为 80.0%≤w(LaF₃)< 85.0%,La₂O₃含量满足 1.0%≤w(La₂O₃)≤2.0%,电解 温度控制在 960~980℃,此条件下电解 LiF-LaF₃-La₂O₃ 熔盐制取 La-Cu 合金较为理想。

3 结论

 熔盐体系的电导率随温度的升高、氧化物 La₂O₃含量的增加而增大,随熔盐体系中 LaF₃含量的 增加而减小。

 2) 电解温度、LaF₃含量、氧化物 La₂O₃含量与熔 盐电导率的关系可以表示为 *k*=-1.54114+0.00794*t*-0.03704*w*(LaF₃)+0.10839*w*(La₂O₃),其适用参数范围如 下:温度 *t* 为 950~1030℃,*w*(La₂O₃)为 0~3.0%,*w*(LaF₃) 为 75%~85.0%。

 3) 电解LiF-LaF₃-La₂O₃熔盐制备La-Cu 合金较为 理想的条件如下: 80.0%≤w(LaF₃)<85.0%, 1.0%≤ w(La₂O₃)≤2.0%, 电解温度应控制在 960~980 ℃。

REFERENCES

(6)

- [1] 李 强,马 彪,黄国杰,谢水生.稀土在高强高导铜合金中的研究现状与展望[J]. 热加工工艺, 2011, 40(2): 1-3, 7.
 LI Qiang, MA Biao, HUANG Guo-jie, XIE Shui-sheng. Research progress and prospects of effect of rare earth on high-strength high-conductivity copper alloy[J]. Material & Heat Treatment, 2011, 40(2): 1-3, 7.
- [2] 马 壮, 狄丽莉, 朱玉军. 稀土元素 La 和 Ce 对纯铜性 能的影响[J]. 铸造技术, 2005, 26(3): 227-229.
 MA Zhuang, DI Li-li, ZHU Yu-jun. Effect of rare-earth element La and Ce on pure copper[J]. Foundry Technology, 2005, 26(3): 227-229.
- [3] 庞思明,颜世宏,李宗安,陈德宏,徐立海,赵 斌. 我国 熔盐电解法制备稀土金属及其合金工艺技术进展[J].稀 有金属,2011,35(3):440-450.
 PANG Si-ming, YAN Shi-hong, LI Zong-an, CHEN De-hong, XU Li-hai, ZHAO Bin. Development on molten salt electrolytic methods and technology for preparing rare earth metals and alloys in China[J]. Chinese Journal of Rare Metals, 2011, 35(3): 440-450.
- [4] 廖春发,罗林生,王 旭,汤 浩. 熔盐电解制备铝钕中间合金及其机理[J]. 中国有色金属学报, 2015, 25(12):

3523-3529.

LIAO Chun-fa, LUO Lin-sheng, WANG Xu, TANG Hao. Preparation for Al-Nd intermediate alloy by molten-salt electrolysis method and its mechanism[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(12): 3523–3529.

- [5] ZHU X P, SUN S C, LIU C, TU G F. Study on the solubility of RE₂O₃ (RE=La and Nd) in light rare earth fluoride molten salts[J]. Journal of Rare Earth, 2018, 36 (7): 765–771.
- [6] MOHANDAS K S, SANIL N, RODRIGUEZ P. Development of a high temperature conductance cell and electrical conductivity measurements of MAICl₄ (M= Li, Na and K) melts[J]. Mineral Processing and Extractive Metallurgy, 2006, 115(1): 25–30.
- [7] KAN H M, WANG Z W, BAN Y G, SHI Z M, QIU Z X. Electrical conductivity of Na₃AlF₆-AlF₃-Al₂O₃-CaF₂-LiF(NaCl) system electrolyte[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(1): 181–186.
- [8] 陈凌云. LiF-NdF₃-Nd₂O₃ 熔盐体系物理化学性质的研究[D]. 上海: 华东理工大学, 2015.
 CHEN Ling-yun. Research on physical and chemical properties of LiF-NdF₃-Nd₂O₃ molten salt system[D]. Shanghai: East China University of Science and Technology, 2015.
 [9] 日時五 防出日 田中白 並び達 充 計 N + 1D
- [9] 吕晓军,陈世月,田忠良,赖延清,李 劼. Na₃AlF₆-K₃AlF₆-AlF₃ 熔盐体系的物理化学性质研究进展[J]. 轻金 属, 2013(8): 29-32.

LÜ Xiao-jun, CHEN Shi-yue, TIAN Zhong-liang, LAI Yan-qing, LI Jie. Review on the physical-chemical properties of the Na₃AlF₆-K₃AlF₆-AlF₃ molten salt system[J]. Light Metals, 2013(8): 29–32.

- [10] DANĚK V. 熔融电解质的物理化学分析 [M]. GAO Bing-liang 译. 北京: 冶金工业出版社, 2014.
 DANĚK V. Physical and chemical analysis of molten electrolyte[M]. GAO Bing-liang transl. Beijing: Metallurgical Industry Press, 2014.
- [11] 胡宪伟, 王兆文, 高炳亮, 石忠宁. NdF₃-LiF-Nd₂O₃ 系熔 盐电导率的 CVCC 法研究[J]. 东北大学学报(自然科学版), 2008(9): 1294-1297.
 HU Xian-wei, WANG Zhao-wen, GAO Bing-liang, SHI

Zhong-ning. Study on the electrical conductivity of NdF₃-LiF-Nd₂O₃ system melts determined by CVCC technique[J]. Journal of Northeastern University (Natural Science), 2008(9): 1294–1297.

[12] 吴其山. Nd₂O₃-NdF₃-LiF 熔盐体系中电导率及钕溶解度的 测定[J]. 稀有金属与硬质合金, 2006, 34(1): 52-54. WU Qi-shan. Electrical conductivity and neodymium solubility of Nd₂O₃-NdF₃-LiF fusion salt system[J]. Rare Metals and Cemented Carbides, 2006, 34(1): 52–54.

- [13] 廖春发,汤浩,王旭,罗林生,房孟钊. Na₃AlF₆-AlF₃-LiF-MgF₂-Al₂O₃-Nd₂O₃-CuO熔盐体系电导率的研究[J].
 稀有金属与硬质合金,2016,44(1):60-64.
 LIAO Chun-fa, TANG Hao, WANG Xu, LUO Lin-sheng, FANG Meng-zhao. Study on electrical conductivity of Na₃AlF₆-AlF₃-LiF-MgF₂-Al₂O₃-Nd₂O₃-CuO molten salt system[J]. Rare Metals and Cemented Carbides, 2016, 44(1): 60-64.
- [14] BAO Morigengaowa, WANG Zhao-wen, GAO Bing-liang, SHI Zhong-ning, HU Xian-wei, YU Jiang-yu. Electrical conductivity of NaF-AlF₃-Al₂O₃-CaF₂-ZrO₂molten salts[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(12): 3788–3792.
- [15] CHEN Shu-mei, LIAO Chun-fa, LIN Jue-yuan, CAI Bo-qing, WANG Xu, JIAO Yun-fen. Electrical conductivity of molten LiF-DyF₃-Dy₂O₃-Cu₂O system for Dy-Cu intermediate alloy production[J]. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(6): 701–709.
- [16] ZHU Xiao-ping, SUN Shu-chen, SUN Ting, LIU Chuan, TU Gan-feng, ZHANG Jia-yue. Electrical conductivity of REF3-LiF (RE=La and Nd) molten salts[J]. Journal of Rare Earths, 2020, 38(6): 676–682.
- [17] LIAO Chun-fa, JIAO Yun-fen, WANG Xu, CAI Bo-qing, SUN Qiang-chao, TANG Hao. Electrical conductivity optimization of the Na₃AlF₆-Al₂O₃-Sm₂O₃ molten salts system for Al-Sm intermediate binary alloy production[J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(9): 1034–1042.
- [18] GRJOTHEIM K, NIKOLIC R, ØYE H A. Electrical conductivities of binary and ternary melts between MgCl₂, CaCl₂, NaCl, and KCl[J]. Acta Chemica Scandinavica, 1970, 24: 489–509.
- [19] 郭 瑞. 熔盐电解法制备铝钪合金的研究[D]. 沈阳: 东 北大学, 2009: 27.
 GUO Rui. Study of Al-Sc alloy prepared by molten salt electrolysis method[D]. Shenyang: Northeastern University, 2008: 27.
- [20] LIU Shi-zhe, CHEN Ling-yun, LI Bing, WANG Liang-liang, YAN Bo, LIU Mu-gen. Anode processes for Nd electrowinning from LiF-NdF₃-Nd₂O₃ melt[J]. Electrochimica Acta, 2014, 147: 82–86.
- [21] 何小凤,李运刚,李智慧. NaCl-KCl-NaF-SiO2熔盐体系电

导率的研究[J]. 湿法冶金, 2010, 29(1): 12-15. HE Xiao-feng, LI Yun-gang, LI Zhi-hui, Research on conductivity of KCl-NaCl-NaF-SiO₂ molten salt system[J]. Hydrometallurgy China, 2010, 29(1): 12-15.

- [22] JANZ G J, GARDNER G L, KREBS U, TOMKINS R P T. Molten salts: volume 4, Part 1, fluorides and mixtures electrical conductance, density, viscosity, and surface tension data[J]. Journal of Physical and Chemical Reference Data, 1974, 3(1): 1–115.
- [23] STEFANIDAKI E, PHOTIADIS G M, KONTOYANNIS C G, VIK A F, ØSTVOLD T. Oxide solubility and Raman spectra of NdF₃-LiF-KF-MgF₂-Nd₂O₃ melts[J]. Journal of the Chemical Society, Dalton Transactions, 2002(11): 2302–2307.
- [24] GUO X, SIETSMA J, YANG Y. A critical evaluation of solubility of rare earth oxides in molten fluorides[M]. Rare Earths Industry. Elsevier, 2015: 223–234.

Electrical conductivity of molten LiF-LaF₃-La₂O₃ system for La-Cu alloy

CHEN Shu-mei^{1, 2}, HONG Kan², WU Xin-yu¹, LIANG Xin², LIAO Chun-fa¹, CHEN Dong-ying²

 Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China

2. Ganzhou Nonferrous Metallurgy Research Institute, Ganzhou 341000, China)

Abstract: The electrical conductivity of LiF-LaF₃-La₂O₃ molten salts ($w(LaF_3)=75.0\%-90.0\%$, $w(La_2O_3)=1.0\%-3.0\%$) was systematically measured in the temperature range from 950 °C to 1030 °C by using continuously varying cell constant(CVCC) method. The composition and temperature dependences of the LiF-LaF₃-La₂O₃ system electrical conductivity were investigated. The optimal operation conditions for La-Cu alloy production were determined via an analysis of electrical conductivity and activation energy for conductance which calculated based on the Arrhenius equation. The results show that the molten system electrical conductivity linearly increases with the increase of temperature and the La₂O₃ content, and decreases with the increase of LaF₃ content($w(La_2O_3)$), can be express as: $k=-1.54114+0.00794t-0.03704w(LaF_3)+0.10839w(La₂O₃$). The optimal electrolysis conditions for preparing La-Cu alloy in LiF-LaF₃-La₂O₃ molten salt are as follows: $80.0\% \leq w(LaF_3) < 85.0\%$, $1.0\% \leq w(La₂O₃) \leq 2.0\%$, the temperature range from 960 °C to 980 °C.

Keywords: electrical conductivity; molten salt; La-Cu alloy; lanthanum oxide

Foundation item: Project(51674126) supported by the National Natural Science Foundation of China; Project (20192BBE50027) supported by the Key Research and Development Plan of Jiangxi Province, China

Received date: 2019-12-21; Accepted date: 2020-03-20

Corresponding author: LIAO Chun-fa; Tel: +86-797-8312215; E-mail: Liaochfa@163.com

(编辑 何学锋)