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Fig. 1 Schematic diagram of crack propagation in layered
composite materials with weak interface toughening

mechanism
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Fig. 2 Cracks are captured at interface between matrix layer
A and interlayer B (a) and step-like lamellar fracture

morphology (b)

1.3 ZBtErhiE) 14

AT 55 SR G ), W LU . S 2
577 THFERE R O R R I s S v ) S5 48
) 3 TR F o 1) 2 R A B A T AL 2 R A R B

T R R S BT, Y e ] 2 B R TR N
PEIEARZ (8] 5N P a2 B R A28k, 2 ERAR
i BRIk — o B3 s 2Bk 8] 2 15 )
IR BN R & Bk (8] 2 ) 2R A4
BHESN AE RIS R AW, e o i e ik 5
WEY BT E SEEZ A, e, Bk
6] R =PGRS Sy e, R SURImBEAL . Fraisg
RANIIE s AR RE St v 8] J2 4 AR T oK % gt S
TIERAEEEIINE . RO A2 BB H]E 5 R4
J& 2 B 5 T 5 BE AR BT (I SE R, AR S Ak
A e S AN IR S (KBRS, AT JE— 20 SRk Joy B
JIEH . REUNRAAT Ry R, KT R
RHOWIR AR, STl sh. Brid, Bz
B — PR EIEIBL] . ADCRT LA L A = 2
AT RE R SC LG ), BT LUK JZ 18 9 5t
BE— P BCETIVE . 98 I EIN Ik B A4 2 1 W 2R iR i
I, ESRIBTE A2 ksl AR RE R, (HIE
I ROUAE T — R R R AT IR, A
JRIRMPRLEIL “ AW RSO 3). B, 2
Ve rh ] Z G PR R G MRHE AR SZ A i, BARILNGE
VERARZ W, BV E R ReE S “Hri%” 1k
FIPRIE R R 7E B0, XM B v 1 He2e 4tk
AN I RE -

p
-:ﬁiiifii-fﬁzﬁ:--
2 T Interface debonding  Gap T
B3 B a2 R R LR R

Fig. 3 Mechanism schematic diagram of plastic interlayer
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composites tested in L-S orientation at room temperature
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Fig. 5 Stress—strain curves of W/Ta multilayers composites

with different thickness ratios
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Toughening mechanism and research status of
tungsten layered materials
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Abstract: Facing an extremely harsh service environment in the nuclear fusion devices, the intrinsic brittleness of
tungsten materials has become the main factor restricting its application as the plasma facing materials. A structural
toughening method of layered toughening belonged external toughening mechanism has been considered to be one of the
most effective methods to improve the toughness of brittle materials. To protrude the necessity of layered toughening, the
challenges and limitations of tungsten materials as plasma facing materials in nuclear fusion devices was introduced in
this work. The provenience and characteristics of the layered toughening mechanism were also clarified. The toughening
mechanisms of layered toughening include weak interface toughening, strong interface toughening and plastic
intermediate layer toughening. Based on the mechanisms of layered toughening, the current research status and
development trends of tungsten layered materials were summarized at the end.
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