%030 B 8 M
Volume 30 Number 8

rERERERFR

The Chinese Journal of Nonferrous Metals

2020 4 8 H
August 2020

DOI: 10.11817/.ysxb.1004.0609.2020-39575

TC4 & & IR IZIF BB LA ETHY

HERUS 2

KO & R, TR, R, Fad
(L HE TR MRRESS TR, 0% 710048)

 Z: £ MATLAB & E3T CA-FE Ul BZNI—A R4 & b AR S A KR, @571 TC4
KA A IR HER ) T it WO L 2 AR I B TH SR, B T R SR A IR 3 B FCAE F R I TOm
HEVHADHAT T S5 REBH: REYINIHES R GRS R R A T B s &R 5, 5t
WG, EIRFEREVER T Sk DURRR S R s oA, SRS R AR A, ESAHAER
B IR A SUREFE N oS G . ST, AT IRAE SRS, RIS R SR R & Ry, BoRprd

S T 4 e

KR TC4 &4 Mt BOMAL; FUERH; CA-FE %

YEHE: 1004-0609(2020)-08-1876-11

FESES: TG402

YHERFRERS: A

TC4A(Ti-6Al-4V) K A & AF N — Fh B Z ) TR M
kB, BARRLEETERE, H iz N TR,
AW, (R TCA & &85 M 3 B
Jiik, R R L R G R RO NV B AN AT L A
B, TS SR RO 4 2 5 B & M g 2 TR AEAE AR
SRR R R (HZH T URA. SRR, &
TR G 1) LI TTVEME DA B AR IR O A s A A i
o pte JEAER, THERHEE S SUISMRA K E,
NF S SR TR R, H OTE & @ R 45
AR TR IR,

FIH CA %, XTI T Al-Si-Cu & & ANA
TV BE RV H R AR AN Z AN kL ) AR KT AR
ZHAN ZUh@E A e M s, AR R4
[ei) AN Sl i SR E R BERR BEAE R 2 AN R AR K
M AR, ZHU S04 T E B EISIER T
Al-4%Cu B 4 55 B SRR A I TS0 Ak 7 A TR
WAL BB CE M i R . ) AR IR R
WA FEECERGRA, R AR I et [ o AR T A D )
JST &R, Bl T i ) CET(RRIR v —55 5l i)
A, FIRWEFR R CA VETE N E 4T F 1R 5,
AR CA i H BRALHE a7 51 P 2 4F F T A 20 AR
(KBl T GANDIN 25U Hi () CA-FE VA2t 7 —
Tl (0 F B, 1207 VR A CACTHE A LB 5 4

WiAK, FECAMRODBRIRIREY . EHZ0ik,
YIN MR FE 7 ASA) JR EA H AN T2 4 N oL TR
PG R (LENS )i 2 4t A R o T 5 (R s AR L 5
HAN 25027 Bl 7 488 T2 580 5 4 U050 2 1A (1
KR, FEXFIREE PR A 1m0 S 5l I AR WL AT 3
s 2R8I 2R 5T T R [FI B B R FE 35t TC4 &4
B AR 2 m; AMIR ST Bkl b it 72 o
ek se g R, IR T O I R R R & B
S SELER . TIAN 25U 98 T BWOR BT U (LDS)
RO A LR, it T TESHEA
GUBSRZ A ZR s SR ST ot oo My 00 0 A o
TR T, BT 1@ A O S AR R B
BT, 2R TR R S WOV 2 2k [ AT 5 v B PR 55
(E R Sk 1) B 8 M R 5 e ] i TooWn 2H 2R 47 [T 25 AH
AR, H AT WAHCBHHOE . Rk, x5k
AR AL F T I O0 2E s A0 e et [ i ] 25 A
AR I AR AT AL AR R LS S

AL G MRS KA B E, £ MATLAB #5
PTG FENL TCA & &5 B i WOW 4 45 A2 (1)
CA-FE IHEEAL, T B g B0 o A5 e v 7 S Aont
HYW AT TR, 85 & 250 F BRI
S HTRAD S

CA-FE HIR @ L A2 i i 1 B o

HEWE : HE QAR EIEETIIE (51974243); BRI H AR BRI RIDTH (2019Z-31); #522 HiRHE %111 H (201805037YD15CG21(16))

WFsHHEA: 2019-09-11; &1THHEA: 2019-11-30

BEEE: & 8L ¥, B Bi%: 029-82312205; E-mail: zhmmn@xaut.edu.cn



2530 B 8 W

ik B S TC4 GBI EIE IO AL SR B BUE A 5 4 i 1877
4450 1800
Establish an FE model to Conversion of macro and ~ 305 =
calculate welding macroscopic > micro temperature fields by IO 14400 {750 ©
temperature field bilinear interpolation 25 = °

! E 59 14350 g)—700 2

Model establishment le—| Micro temperature field is 5 14300 é %

completed coupled with CA model =15 21650 §

£ 10} » Js0 g | 2

E 1 CA-FE BR 8 SIimieE z —=— Conductivity -wog
. . 5 5 —+— Density 14200 =3

Fig.1 CA-FE model establishment process S W —a— Specific heat * 1550 <

- - y ~—I4150
0 400 800 1200 1600
Temperature/'C

1 BRTIHERE

1.1 BRTLIRE

MR A Rc i ABAQUS FE AT BT iH5
RS, AR BRI LR SF 28 100 mm X 50
mmX 6 mm, HFH&I778 30000 4K/ F A IR TS
BT, FRICIRMIERE 8 AN 3 HESLiASETY C3D8T, J1
RGN 2 Pl

z
ok

2 R BUAR LTS A R k4% el 7

Fig.2 Geometric model and meshing of welding test plate

1.2 EXHHEM

FEAIRTCTH SRR, EH6 A FIRRH 24 A IR
TR TTIR T A FE AR RE S B, B R B &
AR EE RHESYE, RESTERTENSHA AT
HOHERIE, TC4 &ERHAYHESE K 3 i

7o

13 REBFFH

B REIN IR G 2R, R 3 2E
X AR S 10 5 2 A AR RO, A S B X
PORGE SR L T A A SE R T 00, AR R 3R e i %)
TOMGR S B 1 Pl Rk 0
eony = 16, =) (D

Grad = SO'[(BC - eabs )4 - (00 - eabs )4] (2)

3 MRS E
Fig.3 Thermal properties of material

X 6, AEMERITEE, °C; 0, NAERIERE, C;
WIEN 25 Cs Gy NAKHRE, C; o NELFHF-I
IRZEZHH, 5.68X107° (K mPs) s & NERS RS
FIH, 4 0.85.

14 BHERRE

ARG 73 B RO A R T 77 sOA R, B
1P S B AASEADURIE 2 R A R T A Ry s AR THD
PIRFIARIIR . ASCR A IR 715 TIG 12, HAR
Bz N FRIRAE SR b DI oA, K A T
PR, MOEH @I AR, Rk R

—37?
qr=qmexp[ 3 J (3)
h

e g AT OAE BRI B r NBE R
IINIABE R IR RS sy LT AR A

2 TRBEmEE

2.1 REHREHNBEEER
B TERE EERARE, A IRICTHEAS 2K E M
i 37 (2K ) A BE B4 ) T RO AL 2 (oK %)
AL, DAl 5 R L O ORI A R
PR DR LT e, A SR FH XA A A R 200 5 IO
R AT RS, HE A 4 fTR .
4, Ans A Ay Ay AERZEVLAE ST R
M AWOR PR 1L O0(A) FT O(M) 73 3 3R TR O RUEE
T RO N (R AR . AEE TR R R
(x =)y, — ) (x=x)(n —¥)
o = (x;_ xl)(yz -n) Ok (x _xll)()’zz -n) Fka)
(=) =») (x—x)—m»)
(x =x)(V2 = 1) Oha)* (v =x)(y2 = »1) O
“)



1878 hEA O RYR

2020 4= 8 H

R I
Anl 1By 14y
T

el = e
M

4 WRMEARE AR R SR

Fig. 4 Schematic diagram of linear interpolation method

2.2 FEZiRR

K FEAZ 5 5 321 v 307 20 A bR B ) T I SR T A A
R RS A0 T, RISRIZEE n(A0)
e

A0 dn
a6)= Ldmm %)
dn/d(AO)FIE U T :
dn Minax ex _l AH_Agmax ’ (6)
da0) amag, 7|20 g,

K e AR EITEAL B FE (I KAB . AO, JIbnifE
FITE: Al NENTEAZILIR L

2.3 AR

S AT R [ 5 T e A HE R ok R AR AR K,
t, W Z AR KR 5 AEZ MR RN
o= (0)-A0(1,) (7

A w0 T B 122 ZREL

(3] Y 5 T P 4t £ BE 5 0B ST B A R AR,
[i] AF 2R 38 K 5 T AR KRR AR b, Hoa B (8) 3R
7,]—\‘:

Aﬁ:Gi§ND+AO+hm®] ®)

s Ax ATTHERITRAS s Ar AR TR K
G LIRS IR A S H; 4 HFE T 5 rand 2y 0~1
IBEHLEL

G 2 S0 P I R DR AR KT T AR R A T 5
AHY, BRI

4 4
G:b[ZSlm+%ZS2mJ ©)
m=1

L b NRRAE: Sy F Sa 23 5 AT A AT
JCHRIRESE, AR oM A AR E N 1, A0
A B T HE A 0.

FTH TG M A AR Sy [ A oI FE A 28 AN

T
1) = ZG(r)“(”

n=1

(10)

A NARARREG AR, 2 f(0)=1 i,
TEMIIR A AL g I AH o
%ﬁ%fﬁmn Ak QIR e N B NN
—, lﬁﬁ¢m&ﬁﬁ“mﬁ% UEFFIZJE IR 2R
B, Bt CAVERELM S, JUMIRASHANE MG, K
2 AR R0V IO 7 HE R o BRI AR I, V3 B AR BIOE L SR A
IR ARRR Y U

2 2
acL:[k(aci+a(aJ an

ot o? o

Rof: ORI RIREE: Dy TR R
3 BEUMERS O

3.1 EWEES

£ ABAQUS F IRyt E T & il &5 s
TR T AR R S AP UR 8 A B TR Y A 2, A
BIRER W E N 25 Co S HY BN 1B g
JE 14V, JREERR 75 A, EHEEZE 1.5 mm/s, R
A 0.8; BT EA 100 mm, ff DUEEHGE
IR BRI E N 66.6 s, A3 FRICiH 5 AR K5
N 133.2s, 0~66.6 s &b TIRBMABTBL, 66.6~133.2 s
AbTFAR S5V BN B

B 5 FRn 5N 4~126 s IR 22 R B 3 16043
fitE . MWE ST LAE H, EEERITF 4 s B, 14
PR B B G BT, BT AR R AR, T
PP A0 DX, P R RRAERT AR T LT AN R AE AR A
B SRR AL S (UL 5(b)), TE 60 s B, #Jir
O PR AR B OB AR FFTE B R K, BT HE AR R
DLAJEAE NI G 2, IR BRI R BT o Bl 4
JEEVES T, SRR, SRR N I B (O
5(c)), 1E70s i, AHEFEIG, SR E TR
Bela Wl — EAL T INBCIRES IR EEARN TR AR X 4
B, PREFIE 220~770 ‘C 2 [A]. AN KA Ht fE
HR XA — L 3 3 A e AR 9 ) ) PR e R (LR
5(d)), fE 126 s I, BERIREEGRE NIE, SRR
B2 130~270 'C, HiRFEHHE SRR, R Em
B1%1,

Nk S BRSNS, o AR
P b BT VAR S% AR O )RR SR R T SR EGER 4
MIIRER M2, i 6(a)Fl(b)Fis .



o530 B4 8 ik G S TCA & BRI O S AR A BB AL S 20 1879

o/C

6/C

2718.68 (@) 2830.43
2494.21 2596.87
2269.73 2363.30
2045.26 2129.74
1820.79 1896.18
1596.31 1662.62
1371.84 1429.05
1147.37 1195.49
922.89 961.93
698.42 728.37
473.95 494.80
249.47 261.24
25.00 27.68

6/ (c) 6/
269.82
258.34
246.86
235.37
223.89
212.41
200.93
189.44
177.96
166.48
155.00
143.51
132.03

768.56

723.23
677.90

B 5 AR Z R 2 W 5 7 43 AT AU 45

Fig. 5 Simulation results of macroscopic temperature field distribution of weldments at different times: (a) =4 s; (b) =60's;  (c)
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Fig. 6 Welding thermal cycle curves of different nodes: (a) Curves of selected node along welding direction; (b) Curves of selected

node in vertical welding direction
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Numerical simulation and analysis of
microstructure evolution of TC4 Alloy weld pool

ZHANG Min, HUANG Chao, GUO Yu-fei, ZHANG Li-sheng, LI Ji-hong

(School of Material Science and Engineering, Xi’an University of Technology, Xi’an 710048, China)

Abstract: Based on the CA-FE method (cell automaton-finite element) combined with grain nucleation and growth
theory, a numerical calculation model for microstructure evolution in TC4 titanium alloy molten pool under transient
welding temperature field was established on MATLAB simulation platform. Based on the model, the welding transient
temperature field and the microstructure evolution under its influence were simulated. The results show that, the
calculation results of the temperature field are consistent with the characteristics of local heat concentration and high
dynamic changes in the welding heat process. The edge of the molten pool is first nucleated, and under the action of the
temperature gradient, the crystal grains grow in the form of columnar crystals to the center of the molten pool and finally
form a coarse columnar crystal structure. The microstructure in the molten pool rapidly transforms into &' martensite in
the solid phase transformation stage. The verification experiment was carried out on the simulation results, and the
simulation results are in good agreement with the experimental results, indicating that the model is highly reliable.
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