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Fig. 1 Optical microstructure of cross section parallel to
extrusion direction of ZMS51 alloys: (a) As-extruded alloy;

(b) T6 treated alloy
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Table 1 Tensile and compressive properties of as-extruded and T6 treated ZM51 alloys
Condition Rpolz/MPa Rm/MPa Rpco‘z/MPa Rmc/MPa RpO.Z/RpCOAZ
As-extruded 192 260 109 370 1.76
T6 321 340 150 410 2.14
IR P45 SR 5 S 2 0 PR ol - S Neurve
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Fig. 2 Sketch of fatigue load up-and-down for T6 treated
ZM61 alloys
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Fig. 3 Fatigue S—N curves of T6 treated ZM61 alloys under

sine-wave load type of TC condition
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Fig. 4 Overall fatigue fracture surface morphologies of T6 treated ZM51 alloys: (a) £100 MPa, 1.38 X 10° cycles; (b) £120 MPa,

1.91X10° cycles; (c) £150 MPa, 1.10X 10° cycles; (d) £180 MPa, 3.09X 10* cycles (Region 1, Region 2, and Region 3 correspond

to crack initiation region, crack propagation region, and collapse fracture region)
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Fig. 5 Overall fatigue fracture surface morphologies of T6 treated ZM51 alloys: (a) Crack initiation region, +100 MPa, 1.38 X 10

cycles; (b) Crack initiation region, £180 MPa, 3.09X10* cycles; (c) Crack propagation region, £100 MPa, 1.38 X 10° cycles; (d)

Crack propagation region, +180 MPa, 3.09 X 10* cycles; (e) Collapse fracture region, £100 MPa, 1.38X 10° cycles; (f) Collapse

fracture region, +180 MPa, 3.09 X 10* cycles
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Fig. 6 Optical microstructures of post-fatigued T6 treated ZM51 alloys in transverse direction: (a), (b) £100 MPa, 1.38 X 10° cycles;

(c), (d) £180 MPa, 3.09 X 10* cycles
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Fig. 7 Optical microstructures of post-fatigued T6 treated ZM51 alloys in longitudinal direction: (a) £100 MPa, 1.38 X 10° cycles;

(b) £180 MPa, 3.09 X 10* cycles; (c) £100 MPa, 1.0 X 107 cycles
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Fig. 8 Schematic diagram of process of fatigue fracture of T6 treated ZM51 alloys: (a) Compression stage; (b) Tensile stage
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High cycle fatigue behavior of T6-treated ZMS]1 alloy extrusion

MU Tong"*?, SHI Guo-liang" >3, ZHANG Kui"*?, LI Xing-gang" %>, LI Yong-jun"??,
MA Ming-long"*?, YUAN Jia-wei' *?

(1. State Key Laboratory of Nonferrous Metals and Processes, GRINM Group Co., Ltd., Beijing 100088, China;
2. GRIMAT Engineering Institute Co., Ltd., Beijing 100088, China;
3. General Research Institute for Non-ferrous Metals, Beijing 100088, China)

Abstract: The industrially extruded ZM51 magnesium alloy was studied in the present work. The static mechanical
properties of as-extruded and T6 treated samples along extrusion direction (ED) were tested, and the high cycle fatigue
behavior of T6 ED samples were studied under stress ratio R=—1. The results show that the tensile and compressive
strength of the ED sample are improved by T6 heat treatment, but the elongation is greatly reduced, and the increment of
the compressive yield strength is much lower than that of the tensile yield strength, resulting in the rise in the
yield-strength asymmetry. The fatigue strength of T6 treated ZM51 alloy is 103 MPa under 1X 107 cycle conditions,
which is about 30% of its tensile strength. The tensile twinning and detwinning mechanism play a dominate role in
fatigue deformation process, which is occurred in the plastic zone of the crack tip. The fatigue crack mainly initiates at
the twin boundaries near the specimen surface, and propagates in a trans-granular mode. There are a large number of
needle twins on both sides of the fatigue fracture which cover the whole fracture. The larger the stress, the larger the
number of needle twins, and the smaller the spacing. The thickness of twin layer near the fracture decreases with the
increase of the stress.

Key words: wrought magnesium alloy; tension-compression yield asymmetry; high cycle fatigue; twinning; detwinning
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