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ABSTRACT The kinematically admissible three- dimensional continuous velocity field of square bar drawing

through a conical die was established. Its divergence has been proved to be zero. Then, the integral as a func-

tion of the upper limit and surface integral were used respectively in deformation and friction powers, and an

upper bound analytical solution of the square bar drawing stress was obtained by the upper-bound theorem.
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1 INTRODUCTION

The square bar drawing is different from
round and flat bar drawing in that the drawing is
not axisymmetrical and plane deformation prob-
lem but a three dimensional deformation. So,
how to establish three dimensional velocity field
of square bar and make it be kinematically ad-
missible, as the method for round and strip
drawing in Ref. [ 1= 2], 1is first priority of this
paper. What kind of mathematical integration
will be used to make ahove velocity field get ana-
lytical solution is put on emphasis of the paper.

2 VELOCITY FIELD

The deforming zone of drawing square bar
through a conical die is shown in Fig. 1(a), (b)
and the die in (c).
gitudinal direction by plane X OZ, let point O be

If the die is dissected in lon-

origin of the coordinates at the exit, then on the
cross section at the distance x from the exit, the
horizontal velocity, thickness and width are v,
h(x) and b(x ). The equations of the die profile
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are
h(x)= 2xtga (1)
b(x)= h(x)= 2xtga (2)
where  a is the half die angle, as shown in
Fig. 1(h).

From Von Karman s assumption, let x, y,
z be the principal directions of stress and O, v,
be uniformly distributed on the cross section,
thus

h()b()v() = h]b]?)]

= hi(x)b(x)v,= C (3)
S SR

" b)) o

From Cauchy Equations and the direction of
v, 18 opposite from x, we can get

dvy

Ox
CLH (x)h(x)+ blx)h (x]]

b*(x ) h*(x)
e _ %LLLL_
C b(x)h(x)

ba)hi(x) " O

Thus, the strain rate and velocity fields are
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4x“tg”a
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4x tg" a
e . —L—.
X 2 3, 2.0
X tgma
€ = :
R (6)
L =C
& = 43l
xtgma
[t can be seen from Fig. 1(b) that substr
tuting x = x9, x = xjandy = 0, z = Ointo

Fig. 1 The square bar drawing

e _ CIb(x)h(x)+ blx) W (x)]
" b (x ) h3(x) ’
L =Ch(x)
i bi(x) h(x)’ (4)
‘ez _ = Ch(x)
b(x)h*(x) ,
o= leoy o =Cblajy
) Iew ay bz(x)/h(x)’ o
v, = I'ezaz . =Lhrxld
b(x)h(x) ,
From Eqn. (2) and substituting b (x) =
h (x) = 2tga, h(x) = b(x) into Eqns. (a),
(b) and (4), we get

Eqn. (5) yields v, = vo, vo= v1, v,= 0, v,
= 0. Since the divergence of three dimensional
velocity vector is

v= v+ Yy + vk
and

. Ov, ov, Ov

divo ox T ay" + o,

= .8_,(+ :‘3_},+ ézz 0

we know Eqns. (5) and (6) are kinematically

admissible.
3 UPPER BOUND POWER

3.1 Integration of plastic deformation power
Substituting Eqn. (6) into the equation

= II J + €drdyds,

and noting h(x)/2, b(x )/2 are still the func

88dv

tions of x, integrating x, y, z in turn yields
. _2- Y() 2
Wi,= ¢ ’\/7“‘ dx‘_mdy
an
bk 4y %102 (1
= 20CIx |iv= 0CIn(")
1
h
= 0ClIn(7)>
hi
= 0CIn A (7)
where xg= h xX1= h 'thu%J_ hq
’ 2tg 2tg “xq hy



Vol.6 Ne3

Surface integral of 3D velocity field for square bar drawing -« 133 -

(;Q)z is called as the elongation coefficient
1

of square bar drawing.

3.2 Shear power

Substituting x = x¢ into Eqn. (5), the ve
locity field at entry becomes

Uy = Vo
I Cy
y = 3, 2
4xplg”a (c)
_ = Cz
v, = 3, 2
4xptg” a

Since outside of entry is rigid region, the
tangential velocity discontinuity along the section
s

| Av, | = AU_%-F N2 = U%-}- 2
_C 2 2
- 4x8tg2a yorz (d)

The domain of integration is shown in Fig.
2, where the equation of straight line OB is y =
z. As long as the shear power in triangle area is
found out, the total power in whole square is ob-
tained from following equation

W, = SIM Av, | dF

Y

= J_J + z7dydz

Fdx otg

= J_udyj + 27z
xotg a

Considering Ref. [ 3] and noting by = ho,

ho= 2xotga, above mtegral becomes

ig. 2 Integral domain at entry

W's(’:xotg (IJ—A[Z : +y+
9Lln(z+ J=20 3278 dy

2y, £
xotg aJ—u y " n(y+

J2y)- 9glny] dy

3 Cktga+ FENE (1{ . In( 1+

1) Sy
et v 1402y (e)

With the same procedure, substituting x =
x 1 into Eqn. (5), the velocity field at exit is

.

Ve= U1 v, =
* T 4x?tg2a’
I Cz

: 4x?tg2a

and the tangential velocity discontinuity is

| Av, | = JA112+ Av? = JU?-F 2
= J f
4x 1tg a )
The integral domain is just the exit section,
as shown in Fig. 3. The equation of OA sy = =z
and by = h;= 2xtga, thus the sum of the

shear powers in whole domain is

W= SkI | Av, | dF

w1

_8kC 2
= / dF
4x3tg2a ) oz
= dyf + z%dz
xltg a
- ﬁﬁgﬂ3 M2+ In1+d2)) (g)

The results of Eqns. (g) and (e) show that
the shear power consumed at exit is the same as
that at entry. The sum of the shear powers is

Wo= W, + W,
Ay me 2 )

3.3 Surface integral of friction power
Suppose the friction stress at the contact
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Fig. 3 Integral domain at exit

mk and the tangential velocity
Vi= v+

surface 1s | =
vector of deformed metal along it is,
vy + v.k. Noting the die does not move, we
multiply the friction power in AABB by 4 and
find the sum of them

Wf: 4I’9| Avil dF
= 4 [ pmk| 0~ v dF
= dmk [l v dF (h)
Substituting Z = h'Lz'L)' into Eqn. (5), and
v, = T, into modulus of the tangent velocr
4x “tga

ty vector and arranging, we get

2

2 2
lvil= Joui+ vi+ v

o C 2 X2
R RENER I+ tg”a+ (x)

’ 2
dF= |1+ (g'fc')dxdy

Substituting above Equations into Eqn. (h)
yield% the double integral as follows

= 8 kf ‘
f " 4x tg (1
J1+ e’ a+ (j‘ )

’1+ (ﬁj)zdx dy

bhlax)

Because y = 5 = xlgd, 2= TS

dz _
xtga, and R thus

YMICJ1+ tga

4x* tga

W, = Smkf [

J1+ e a+ (J-)zdy]dx

= Skaf ‘@

4x tga

X 2 X2
{2 J1+tga+(x)+

14 telq)
5 ‘ln[i_+

J1+ te? a+ (%‘L)z]}-*‘t%“dx

B R e
o, 4xttgla
2
{.x_tzgﬂ /1+ ztgzaJra;L]_-x—EthJ_
tea+ o 1+ 2teq
In ™® = Jdx
N1+ tga

J1+ te2a e 14 214 a,
tga

teat J 1+ 21%a
n ]
tg’ a J1+ tg?a
kaJAXO de
o X
X

h
Owing to f = i) and from Ref. [ 5], the
1 1

result is arranged into the following

. h
W, = mkCln hJ){ J(:scz a+ 2sec’ a+
1

In(sina+ o 1+ sin’a

. 2
cos asin” Q)

/ (9)
Let the drawing power in exit be th%vl =

9C = Wi + Ws + Wf, substitute Eqns. (7),
0,

(8), (9) into it, note k= 7~ and rearrange, we
E

obtain

o n A Aed n
OS_l +3J—3[J_2+1(1+J_2)]+

h
in J[ J csc? o+ 2sec” o+
J37 b

In(sina+ o 1+ sin’a)

10
cosd * sin’a / (10)

Eqn. (10) 1s the upper bound analytical
solution of drawing stress for square bar, where
a is halt-die angle, hg
b1 are the sides of the square at

Ais elogation coefficient,

= boand h]z



Vol.6 Ne3

Surface integral of 3D velocity field for square bar drawing

* 135 -

entry and exit respectively.
The limit reduction for square bar drawing
: m,  ho
is  InA+ 0. 88tga+ —=Iln7 °
g J?) h

[ J s a+ 2secta+

In(sina+ 1+ sin’al

. 2
cosa ®* sin” A

] <1 (11)

Here, neglecting the effect of the die bear-
ing and back tension, the equation of the draw-
ing stress deduced by Avitzur is

L Zf(a)ln(%o)+
1

OS'
2 ,_a
J_3[sin2a_ cot a+
R
m(cota)ln(ﬁ)] (12)
1

where the functional expression f ( Q) is given in

the Ref. [ 6].
4 CALCULATING RESULTS

An annealed aluminium square bar with sec
tion of I5Smm X ISmm is drawn into the section
of 13mm X 13 mm through a conical square die.
If a= 12°andf = m = 0.1, the relative draw-
ing stress can be calculated.

Substituting A= 1.33, m = 0.1, hg =
15, hy= 13, a= 12°into Eqn. (10), we obtain

9
o = 0. 285+ 0. 188+ 0. 00826[ 5. 022+

b

4.88]= 0.55
Calculating approximately by Eqn. (12),
changing the entry and exit sections into rounds
with the same areas, we obtain h(z) = 15% =
TRG. Substituting Ro = 8.463, hi= 13° =
TR, Ri= 7.334, f(a)= 1.00093°, a=
12°= 0.209 rad, m = 0. linto Eqn. (12), then
2
0

S

= (.53

The relative error of calculated results be
tween the two formulas is

_ 0.55-0.53
A= 055 = 3. 6%

Above comparison shows that for the same
friction, elongation and deforming conditions,
the drawing stress of square bar is higher than
that of a round bar. To the example in this paper
the error between the both is only about 3. 6%.

5 CONCLUSIONS

(1) The three dimensional kinematically
admissible continuous velocity field of drawing
square bar through conical die satisfies Eqn. (5) .
The divergence of the field is zero and the strain
rate field satisfies Eqn. (6).

(2) Using upper-bound theorem, an ana
lytical solution of drawing stress Eqn. ( 10) and
corresponding maximum possible reduction Eqn.
(11) are obtained by the curvilinear integral and
the integral as a function of the upper limit. It
shows that the drawing stress is the function of
A m, aand 0.

(3) The same shear powers consumed cross
entry and exit sections satisfy the Eqns. (e) and
(g).

(4) To square and round bars, the drawing
stress of square is higher than that of round. The
error of example in this paper is 3. 6% .
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