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Abstract: A generalized nonlinear Baker failure criterion is employed with the upper bound limit analysis to study the 
surrounding rock stability of underground cavities. A three-dimensional (3D) failure mode is established by extending 
the two-dimensional (2D) failure mode, which offers an upper bound expression of the surrounding rock pressure. This 
method is validated with a series of examples before the influence of four parameters of scale parameter, curvature 
parameter, shift parameter and lateral pressure coefficient, on the surrounding rock pressure is analyzed. According to 
these results, failure ranges of the underground cavities are determined. The following conclusions are reached: (1) the 
proposed approach is more accurate to predict surrounding rock pressure than the Mohr−Coulomb failure criterion;   
(2) the surrounding rock with large scale parameter, curvature parameter, shift parameter, and lateral pressure 
coefficient can lead to a more stable underground cavity; (3) the failure range in 3D mode can be predicted according to 
the upper bound solutions. 
Key words: Baker failure criterion; underground cavity; surrounding rock pressure; 3D failure mode; upper bound limit 
analysis 
                                                                                                             

 

 

1 Introduction 
 

Underground cavities such as tunnels, road- 
ways and storages are constructed continuously. 
The support systems need to be properly designed 
to ensure enough supporting pressures. Therefore, it 
is imperative to determine the ultimate supporting 
pressure, i.e., critical failure pressure to prevent 
risks such as surrounding rock collapse. For this 
purpose, numerical methods (e.g., discontinuity 
layout optimization method [1−3], finite element 
method [4−8], discrete element method [9], rigid 
blocks method [10,11] and the limit analysis 
method [12,13]), in-situ testing [14] and laboratory 

testing [15−22] can be employed. The discontinuity 
layout optimization can be used to determine the 
critical layout of discontinuities and associated 
upper-bound limit load for plane plasticity  
problems [1−3]. The finite element method allows 
to simulate the construction sequence, ground 
displacements and stress patterns around the tunnel. 
In Ref. [9], a new framework of discontinuous 
deformation analysis was proposed and the failure 
of a cavity was simulated. The rigid blocks method 
assumes that the failure mechanism is composed of 
rigid blocks and its energy dissipation can occur 
only on the velocity discontinuities [10,11]. When 
comparing to the above mentioned methods, field 
tests are rarely employed since the operation can be 
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time-consuming and costly. In contrast, the 
laboratory test can be conducted in a well- 
controlled condition at a relatively low cost. It helps 
engineers and researchers to understand 
underground cavities’ mechanical behavior and to 
resolve fundamental engineering puzzles, such   
as the stress redistribution after excavation [23],  
the distributions of displacement and stress 
concentration around tunnels [24,25]. However, 
experimental conditions can be far different from 
actual engineering practice. It turns out that the 
limit analysis is capable of dealing with complex 
boundary conditions and structural systems. 
Furthermore, in comparison with conventional 
numerical methods, the limit analysis can derive the 
ultimate load straightforwardly without looking into 
the elastic−plastic deformation process. Convenient 
and rigorous results can be obtained with few 
assumptions [26−28]. Because of its easy usage  
and great capability, the limit analysis has   
become increasingly popular in geomechanics 
community [29−32]. 

To predict the stability and failure modes of 
underground cavities, a common choice is the upper 
bound limit analysis. The pioneering work was 
conducted by LECA and DORMIEUX [33] in 
which the tunnel face stability was studied with   
a Mohr−Coulomb failure criterion. Following   
this work, a series of studies have been   
performed [34−38] and linear Mohr−Coulomb 
failure criterion is employed. However, 
experimental results have shown that geomaterials’ 
strength envelopes are nonlinear [39−41]. It is 
generally agreed that the Hoek−Brown model is 
more accurate in describing the strength of rock 
masses than the Mohr−Coulomb model. It has been 
used to investigate the stability of the underground 
cavities [42−47]. In addition, the extension to 3D 
limit analysis, as another improvement to the 
approach, has been performed. KLAR et al [48] 
proposed 3D upper bound solutions for tunnel 
excavation using admissible strain fields. 
MOLLON et al [49] employed a translational 3D 
multi-block failure mechanism to calculate the face 
collapse pressure for circular tunnels. YANG and 
HUANG [50] investigated the potential collapsing 
range of a deep cavity roof using a 3D limit 
analysis method. Most recently, the seepage force 
has been incorporated into limit analysis for the 
face stability of a tunnel excavated in weak rock 

masses [51]. 
The objective of this work is to study the 

surrounding rock stability of underground cavities 
by calculating the upper bound surrounding rock 
pressure. The surrounding rock pressure was 
calculated using the 3D upper bound limit analysis, 
in which nonlinear Baker failure criterion and 3D 
Terzaghi failure mode were employed. The 
extension to 3D failure mode can make results more 
reasonable because the real engineering cavities are 
in 3D [49,52−56]. The Mohr−Coulomb failure 
criterion and the Hoek−Brown failure criterion can 
be treated as two special cases of the nonlinear 
Baker failure criterion [52]. More parameters were 
used in this criterion and each parameter had a clear 
physical meaning [52,53]. Finally, the influence of 
various parameters on the surrounding rock 
pressure was studied and the associated failure 
ranges were identified. 
 
2 Basic theory 
 
2.1 Upper bound theorem of limit analysis 

The limit analysis technique is developed 
based on the plastic bound theorems [57]. In this 
technique, there are two main theorems, namely the 
upper bound and lower bound theorems [58]. The 
upper bound limit analysis assumes that the 
materials are perfectly plastic with a convex yield 
function in the stress space, and the materials obey 
an associated flow rule. The statement of the upper 
bound method can be described as follows. When 
the velocity boundary condition is met, the external 
rate of work equates to the rate of the energy 
dissipation in any kinematically admissible velocity 
field. The load is no less than the actual collapse 
load. The formulation is given as 

 
d d dij ij i i i iV S V

V T v S X v V                   (1) 
 

where ij  and ij  are the stress and strain rate in 
the kinematically admissible velocity field, 
respectively; Ti is a surcharge load on boundary S; 
Xi is the body force; V is the volume of the failure 
mode; vi is the velocity along the velocity 
discontinuity surface. 
 
2.2 Nonlinear Baker failure criterion 

Based on the triaxial experimental results, 
BAKER [52] proposed a generalized rock failure 
criterion i.e., nonlinear Baker failure criterion. It 
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turns out that the Mohr−Coulomb failure criterion, 
the Griffith strength criterion and the Hoek−Brown 
strength criterion are its special cases. This failure 
criterion is given as follows: 

 

n
a

a

=
n

P A T
P




 
 

 
                          (2) 

 
where τ is the shear stress; σn is the normal stress; 
Pa is the atmospheric pressure. In addition, A, n and 
T are dimensionless strength parameters, and the 
specific physical meaning and value range will be 
explained in detail in the next paragraph. 

Equation (2) is a slight generalization of the 
power-law relationship in the form of S(σ)=Aσn, 
which was adopted in many studies [59−61]. For 
this failure criterion, one advantage is that the 
parameters A, n and T have clear physical 
significance [52,53]. A is a scale parameter that 
controls the magnitude of the shear strength, n is a 
curvature parameter that controls the curvature of 
the envelope and T is a shift parameter that controls 
the location of the envelope on the stress (σn) axis 
and represents a non-dimensional tensile strength. 
In Ref. [52], the ranges of the parameters in Eq. (2) 
are found: A>0, T≥0 and 1/2≤n≤1. When n=1, 
A=tan φ (φ is the internal friction angle) and 
T=c0/(Patan φ) (c0 is the cohesive force), Eq. (2) 
degrades to the Mohr−Coulomb failure criterion. 
The equation is illustrated in Fig. 1. Clearly, the 
curve passes through two points, i.e., (0, PaATn) and 
(−PaT, 0). 
 

 

Fig. 1 Strength curve of nonlinear Baker failure criterion 

and its tangent 

 
For a point M along the curve, the tangent 

equation is [62]: 
 

τ=ct+σntan φt                                              (3) 
 

where ct is the cohesive force at tangent point; φt is 

the internal friction angle at tangent point; the 
values of ct and tan φt are the intercept and slope of 
the tangential line, respectively. 

According to the tangent technique [27,62,63], 
the relationship between nonlinear parameters A, n, 
and T is derived as follows: 

From Fig. 1 and Eq. (2), we have 
 

1n
t

n a

d
tan ( )

d
nnA T

P




                   (4) 

 
Equation (4) can be reformulated into 
 

1

1t
n a a

tan n
P P T

nA




   
 

                   (5) 

 
Substituting Eq. (5) into Eq. (2) yields 
 

1t
a

tan 
n

n
P A

nA




   
 

                      (6) 

 
Substituting Eq. (5) and Eq. (6) into Eq. (3) 

yields 
 

1

1t
t a t

tan 1
[ ]tan 

nn
c P T

n nA




    
 

            (7) 

 
Equation (7) represents the relationship of the 

nonlinear parameters A, n and T, and it is based on 
the nonlinear Baker failure criterion. 
 
3 3D Terzaghi failure mode and 

surrounding rock pressure 
 
3.1 3D Terzaghi failure mode 

A failure mode with a kinematically 
admissible velocity field is essential to limit 
analysis. In this study, according to the 2D failure 
mode (Fig. 2(a)), a new 3D Terzaghi failure mode 
(Fig. 2(b)) was established by a rotation method. 
The rectangle EFF1E1 in 2D failure mode (Fig. 2(a)) 
becomes cylinder EE2E1E3FF2F1F3 in 3D failure 
mode (Fig. 2(b)), block FMN or F1M1N1 is 
transformed into hollow circular truncated cone 
FF2F1F3MM2M1M3NN2N1N3, and cavity MM1N1N is 
transformed into cylinder MM2M1M3NN2N1N3. The 
new 3D failure mode consists of a rigid cylinder 
block EE2E1E3FF2F1F3 and a shear hollow circular 
truncated cone FF2F1F3MM2M1M3NN2N1N3. The 
velocity discontinuous lines EF (or E1F1), FM   
(or F1M1) and FN(or F1N1) in 2D failure mode  
(Fig. 2(a)) are converted into the cylindrical surface 
EE2E1E3FF2F1F3, the circular conical surface  
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Fig. 2 Failure mode of underground cavity and associated velocity field: (a) 2D failure mode; (b) 3D failure mode;    

(c) Velocity field 

 
FF2F1F3MM2M1M3 and the anchor ring 
FF2F1F3NN2N1N3 in 3D failure mode (Fig. 2(b)), 
respectively. The rigid cylinder block 
EE2E1E3FF2F1F3 slips down at the velocity of v0. 
The angle between the velocity v0 and the velocity 
discontinuities surface EE2E1E3FF2F1F3 is 0°. The 
angle between the velocity v1 and the velocity 
discontinuities surface FF2F1F3MM2M1M3 is t. The 
relative velocity v01 is for the discontinuities     
of FF2F1F3NN2N1N3. The angle between the 
FF2F1F3NN2N1N3 and its relative velocity v01 is t. 
The supporting forces of the roof and sidewall of 
the cavity are assumed to be uniformly distributed. 
The cavity height, width and buried depth are h, 2a 
and H, respectively. The supporting forces at the top 
of the cavity and the sidewalls are q and e, 
respectively. Their relationship is e=Kq, where K is 
the lateral pressure coefficient. The associated flow 
rule, velocity boundary conditions, and compatibility 
conditions are met in the formulations [56]. Besides, 
the velocity meets the condition of vector closure 
and the velocity field is illustrated in Fig. 2(c), 
where α is the failure angle. 

From Fig. 2(c), the velocity relationship is 
 

t
1 0

t

t
01 0

t

cos 
=

cos( 2 )

sin( )

cos( 2 )

v v

v v


 
 
 


 
  
 

                      (8) 

 
3.2 Surrounding rock pressure 

According to the upper bound theorem of limit 
analysis (Eq. (1)), the limit load can be determined 
when the work rate of external force equals the 

internal energy dissipation. The limit load 
calculated from the approach is considered as the 
limit surrounding rock pressure in this work. The 
work rate of external force includes the work rate 
generated by the geo-material self-weight (rigid 
cylinder block EE2E1E3FF2F1F3 and hollow circular 
truncated cone FF2F1F3MM2M1M3NN2N1N3) and the 
supporting reaction forces (q and e). The internal 
energy dissipation is generated by the cohesive 
force of surrounding rock. The internal energy    
is dissipated along discontinuous surfaces 
(cylindrical surface EE2E1E3FF2F1F3, circular 
conical surface FF2F1F3MM2M1M3 and anchor ring 
FF2F1F3NN2N1N3). 

(1) External rate of work 
The external rate of work consists of the rate 

of self-weight Ww and the rate of supporting force 
WT. 

The work rate of self-weight, Ww, is derived 
through multiplying the united weight of the rock 
mass by the detachment volume and the slip 
velocity: 

 
2 3

w 0 1 0 2
1

=
3

W Hh v f h v f                    (9) 
 

where f1=(a/h+tan α)2, f2=tan αꞏ(3a/h+tan α)ꞏ 

t t

t

cos cos( )

cos( 2 )

  
 




; γ is the unit weight of rocks. 

The work rates of reaction forces WT are 
formulated by the vertical supporting force q of the 
top of the cavity and the horizontal supporting force 
e on the side of the cavity. Because the support 
reaction force is negative, the support reaction force 
rate is negative.  
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WT=−πqh2v0f3                          (10) 

where 2 t t
3

t

cos sin( )
( ) 2

cos( 2 )

a a
f K

h h

  
 


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
. 

Combining Eq. (9) and Eq. (10) leads to the 
total external rate of work: 

2
ext 0 1 2 3

1
( )

3
W h v Hf hf qf                  (11) 

where Wext is the total external rate of work. 
(2) Internal energy dissipation 
The internal energy dissipation (Wint) on the 

velocity discontinuity surface is a multiple of the 
cohesive force and the velocity:  
Wint=ctπh2v0(f4+f5+f6)                     (12)  

where 

t t
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(3) Surrounding rock pressure 
According to the virtual power principle, the 

external rate of work (i.e., Eq. (11)) is equal to the 
internal energy dissipation (i.e., Eq. (12)). Thus, the 
upper bound surrounding rock pressure can be 
derived: 

 
1 2 t 4 5 6

3

(3 ) 3 ( )

3

Hf hf c f f f
q

f

    
            (13) 

 
 (4) Constraint condition 
According to Fig. 2(c), the velocity constraint 

is presented as  
t

t

t

+ 0

/ 2 0

/ 2 2 0

 

 


  
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                       (14) 

 
The upper bound solution of the surrounding 

rock pressure can be derived from Eq. (13) under 
the constraint in Eq. (14). All calculations are 
performed by the optimization toolbox in the 
Matlab software. 
 
4 Numerical study 
 
4.1 Failure mode validation 

The FLAC3D software was utilized here   
for numerical modelling. The surrounding rock 
parameters are found in Ref. [38], which are shown 
in Table 1. The dimension of the model is 60 m  
60 m  60 m (x  y  z), the height and width (or 

length) of the cavity are 10 m and the depth of 
cover is 20 m, as shown in Fig. 3. The mesh type is 
the cylindrical circular radial mesh. The boundary 
conditions are that the top surface is set to be free 
and the rest surfaces are fixed. The cohesive- 
frictional Mohr−Coulomb law is applied to the 
surrounding rock. The elastic modulus and Poisson 
ratio are 20 GPa and 0.3, respectively. The results 
of the 3D displacement field and the contour of the 
maximum shear strain increment, Figs. 4 and 5, are 
used to show the failure mode of the surrounding 
rock. 

From Fig. 4, it is clear that a triangular region 
appears on the cavity side, which is consistent with 
the assumed failure mode in this study (Fig. 2(b)). 
 
Table 1 Physical and mechanical parameters in analyses 

H/m h(=2a)/m γ/(kNꞏm−3) φ/(°) c0/kPa

20 10 20 18 10 

 

 
Fig. 3 FLAC3D numerical model of underground cavity 

 

 

Fig. 4 Displacement field along xz (a) and yz (b) profiles 
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Fig. 5 Contours of maximum shear strain increment 
along xz (a) and yz (b) profiles 
 
In Fig. 4, a failure cylindrical area is formed at the 
top of the cavity, which is also consistent with the 
assumed failure mode (Fig. 2(b)). The observations 
can also be found in Fig. 5. Therefore, the 
numerical results validate the failure mode in this 
work. Furthermore, the failure mode is consistent 
with the finite element upper bound method in  
Ref. [38]. 

The upper bound method of limit analysis is 
used to calculate the ultimate load and velocity field 
at the limit state (plastic flow state). For comparison, 
the displacement field of FLAC3D at the final stage 
is drawn. A good agreement has been found 
between Fig. 2(c) and Fig. 4, indicating that the 
velocity field assumed in this work is reasonable. 
 
4.2 Quantitative analysis and method validation 

To validate the approach, the 3D results are 
compared with the analytical solutions of Terzaghi 
theory [64] and the results in Ref. [38]. Numerical 
results of the surrounding rock pressure calculated 
by the 2D and 3D failure modes are compared. In 
addition, in the 3D failure mode, the upper bound 
solutions of surrounding rock pressure calculated 
by the Mohr−Coulomb failure criterion and 
nonlinear Baker failure criterion are compared. The 
same parameters in Ref. [38], as listed in Table 1, 
are used. 

According to the Terzaghi ground pressure 

theory [64], the surrounding rock pressure q is 
 

t
t

t

[1 exp( tan )]
tan 

a c KH
q

K a







                (15) 

 
The lateral pressure coefficient K is varied 

from 0.6 to 1.5. The numerical results are 
summarized in Fig. 6. Figure 6(a) shows that in the 
2D failure mode, the results obtained by nonlinear 
Baker failure criterion are in a good agreement with 
results in Ref. [38]. The Terzaghi method 
underestimates the surrounding rock pressure, 
indicating its results for support design may lead to 
unsafe conditions. 
 

 

Fig. 6 Variation of surrounding rock pressure q with 
lateral pressure coefficient K by Terzaghi theory [64], 
method in Ref. [38] and this study (NBF: Nonlinear 
Baker failure criterion): (a) Under 2D failure mode;    
(b) Under 3D failure mode 
 

In Fig. 6(b), the exact solution below the upper 
bound solution is assumed to be the dotted line. The 
figure shows that under the 3D failure mode, the 
results obtained by the nonlinear Baker failure 
criterion are closer to the assumed exact solution 
than those obtained by the Mohr−Coulomb failure 
criterion. Thus, these solutions obtained by the 
nonlinear Baker failure criterion are more accurate. 
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4.3 Parameter studies 
The parameters in the nonlinear Baker failure 

criterion, i.e., scale parameter A, curvature 
parameter n and shift parameter T have clear 
physical meaning. A controls the magnitude of 
shear strength; n controls the curvature of the 
envelope; T controls the location of the envelope on 
the stress (σn) axis representing a non-dimensional 
tensile strength [52,53]. In this section, the 
proposed approach is used to study the influence of 
key parameters on the surrounding rock pressure of 
underground cavities and failure ranges. The 
numerical bounds of parameters are determined 
from Refs. [52,53]. The parametric study results are 
educational to engineers. When the geological 
parameters change, engineers can have a quick 
estimate of the surrounding rock pressure. In the 
following chapters, all the lateral pressure 
coefficients K are not grater than 1. 
4.3.1 Effect of A on q 

To study the influence of scale parameter A on 
the surrounding rock pressure q, a series of studies 
are performed, in which A is set to be 0.5−0.9, n is 
set to be 0.7, T is set to be 0.2, and K is set to be 
0.6−1.0. The results are shown in Fig. 7. 

It can be seen from Figs. 7(a) and (b) that the 
surrounding rock pressure decreases with the 
increase of A. When A increases, the slope (q/A) of 

the curve of surrounding rock pressure q vs A 
decreases, as shown in Fig. 7(c). The effect of A on 
the surrounding rock pressure is influenced by the 
lateral pressure coefficient K. The decrease in 
lateral pressure coefficient K enhances the 
sensitivity of scale parameter A on the surrounding 
rock pressure, as shown by the dotted lines in   
Figs. 7(a) and (b). 
4.3.2 Effect of n on q 

To study the influence of curvature parameter 
n on the surrounding rock pressure q, a series of 
studies are conducted with the curvature parameter 
n of 0.5−0.9, scale parameter A of 0.5, shift 
parameter T of 0.2 and lateral pressure parameter K 
of 0.6−1.0. The results are shown in Fig. 8. 

Figures 8(a) and (b) show that the surrounding 
rock pressure decreases with the increase of 
curvature parameter n. When curvature parameter n 
increases, the slope (q/n) decreases, as shown in  
Fig. 8(c). The larger curvature coefficient n results 
in a smaller influence on the surrounding rock 
pressure q. The effect of curvature coefficient n on 
the surrounding rock pressure q is also influenced 
by lateral pressure coefficient K. The decrease in 
lateral pressure coefficient K reduces the influence 
of curvature coefficient n on the surrounding   
rock pressure q, as shown by the dotted lines in  
Figs. 8(a) and (b). 

 

 
Fig. 7 Effect of A on surrounding rock pressure q: (a) q vs K; (b) q vs A; (c) q/A vs A 

 

 
Fig. 8 Effect of curvature parameter n on surrounding rock pressure q: (a) q vs K; (b) q vs n; (c) q/n vs n 
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4.3.3 Effect of T on q 

To study the influence of shift parameter T on 
the surrounding rock pressure, the following 
parameters are used including T of 0−0.8, scale 
parameter A of 0.5, curvature coefficient n of 0.7 
and lateral pressure coefficient K of 0.6−1.0. The 
results are shown in Fig. 9. 
 

 
Fig. 9 Effect of shift parameter T on surrounding rock 

pressure q: (a) q vs K; (b) q vs T; (c) q/T vs T 

 

It can be seen from Figs. 9(a) and (b) that the 
surrounding rock pressure q decreases with the 
increase in shift parameter T. When shift parameter 
T increases, the slope (q/T) decreases. Figure 9(c) 
proves that the larger shift parameter T leads to a 
less sensitive effect on the surrounding rock 
pressure. In addition, the influence of shift 
parameter T on the surrounding rock pressure is 
affected by lateral pressure coefficient K. The 
decrease of lateral pressure coefficient K improves 
the influence of the shift parameter T on the 

surrounding rock pressure q, as shown in the dotted 
lines in Figs. 9(a) and (b). 
4.3.4 Failure range angle 

As indicated in Fig. 2, when the failure angle α 
is determined, the failure range of the surrounding 
rock can be calculated. Determining the 
surrounding rock pressure and the corresponding 
ultimate failure angle α is convenient with the 
proposed approach as problems are solved with the 
available optimization toolbox in the Matlab. The 
influence of different parameters on the failure 
angle α is derived through the parametric analysis, 
as shown in Fig. 10. 
 

 
Fig. 10 Effects of different parameters on failure angle α: 
(a) Scale parameter A; (b) Curvature parameter n;     
(c) Shift parameter T; (d) Lateral pressure coefficient K 



Zhi-zhen LIU, et al/Trans. Nonferrous Met. Soc. China 30(2020) 1916−1927 

 

1924

All parameters (scale parameter A, curvature 
parameter n, shift parameter T and lateral pressure 
coefficient K) have significant effects on the failure 
range. The failure angle α decreases with the 
increase of the four individual parameters. 
Furthermore, it can be seen that the scale parameter 
A has the most obvious effect on the angle α, 
followed by the curvature parameter n, the shift 
parameter T and lateral pressure coefficient K. From 
an engineering perspective, the surrounding rock 
with larger scale parameter A, curvature parameter 
n, shift parameter T, and lateral pressure coefficient 
K tends to contract the potential failure range. 

The results of the failure range corresponding 
to four cases of Fig. 10 are shown in Fig. 11. The 
influence of these parameters on the failure ranges 
can be demonstrated. 

 
5 Conclusions 
 

(1) The surrounding rock pressure calculated 
by the upper bound method of limit analysis is safer 
than that calculated by the Terzaghi theory. The 
numerical results show that the surrounding rock 
pressure in the 3D failure mode is larger than that in 
the 2D mode. 

(2) The nonlinear Baker failure criterion used 
in this work can provide more accurate solutions 
than the Mohr−Coulomb failure criterion. 

(3) The surrounding rock pressure decreases 
with the increase of scale parameter A, curvature 
parameter n, shift parameter T and lateral pressure 
coefficient K. 

(4) The surrounding rock with large scale 
 

 
Fig. 11 Four failure results with varied parameters: (a) Scale parameter A; (b) Curvature parameter n; (c) Shift 

parameter T; (d) Lateral pressure coefficient K 



Zhi-zhen LIU, et al/Trans. Nonferrous Met. Soc. China 30(2020) 1916−1927 

 

1925
 
parameter A, curvature parameter n, shift parameter 
T and lateral pressure coefficient K (K≤1) tends to 
improve the stability of underground cavities. 
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基于非线性 Baker 破坏准则的地下硐室三维上限极限分析 
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摘  要：将广义非线性 Baker 破坏准则与上限极限分析法相结合，研究地下硐室围岩稳定性。通过扩展地下硐室

二维破坏模式，建立一种三维破坏模式；基于建立的三维破坏模式，给出围岩压力上限表达式。在分析尺度参数、

曲率参数、位置参数和侧压系数对围岩压力的影响前，通过一系列实例验证该方法的有效性。根据研究结果，确

定地下硐室的破坏范围。得到以下结论：(1)采用本文提出的方法预测的围岩压力比基于 Mohr−Coulomb 破坏准则

预测的围岩压力更精确；(2)尺度参数、曲率参数、位置参数和侧压系数越大，围岩越稳定；(3)根据上限解可以预

测三维模型的破坏范围。 

关键词：Baker 破坏准则；地下硐室；围岩压力；三维破坏模式；上限极限分析 
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