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ABSTRACT According to the distribution feature of welding residual stress on plate with welding
seam along axis, a mathematical model of the welding residual stress is established. A formula of natu-
ral frequency of four boundary simply-supported quadrate thin plate with welding residual stress is de-
veloped. Some conclusions have been obtained. They are: (1) if there is welding residual stress, all
natural frequencies of component are in increase, (2) change of high rank natural frequency under the
influence of residual stress is larger than that of low rank natural frequency, and the higher the rank
number is, the larger the absolute amount of change of natural frequency is.
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1 INTRODUTION

Problems of residual stress are now studied earnestly both at home and abroad. There has
been some literatures on production mechanism, survey, readjustment of residual stress. But the
conditions of production have great influence on residual stress and the cause of production is very
complex. Moreover, amount of residual stress changes with time. Hence, distribution and
amount of residual stress varies randomly. Therefore, there is little literature of theory research
on natural frequency of component under the influence of residual stress. In this paper, an object
of study is the welding residual stress. According to the distribution feature of welding residual
stress on plate with welding seam along axis, a mathematical model of welding residual stress is
established and a formula of natural frequency of component under the influence of residual stress
is developed. We will discuss that residual stress has influence on natural frequency of component
from the formula and acquire some useful conclusions.

2 A MATHEMATICAL MODEL OF WELDING RESIDUAL STRESS

We discuss free vibration of quadrate same thickness thin plate.

Suppose that there is a welding seam along axis. Hence, there is distribution of residual
stress in the plate as shown in Fig. 1", Fig. 1(a) shows residual stress on parallel join direction.
The residual stress is large. Large drawing residual stress is produced in the middle of the join.
Fig. 1(b) shows the distribution of stress on vertical join direction.

Because of thin plate, we suppose that residual stress o,, o, are only a function of &5 W
Residual stress o, is parallel to join direction. Residual stress g, is vertical to join direction.

According to Fig. 1 which shows distribution of welding residual stress, we suppose that o, is
only a function of y and o, is only a functon of x for simple computation. Welding residual stress
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does not change with small deformation.
According to the suppositions above and the distribution as shown in Fig. 1, we can establish
a mathematical model of welding residual stress, that is,

G — F[COS(%K(y — %)) + Cos(%(y - i))]
: (1)
g, = Gcos(%r(r — —%))

Figure of the formula (1) is shown by Fig. 2.

Because residual stress exists in object with balance condition when there is not outer force,
it equals to zero on any section that the join force and the join moment of force are produced by
residual stress, that is,

fa dA = 0 2
_[dM: 0 3)

We prove that the formula (1) is satisfied with formulas (2) and (3). Thus, we have

z (]
j_ i F[cos(%“(y — %)) th COS(ilblr(}J = %))]dydz =1

J:z UGcos(%(: — %))d.rdz = 220G %{sin(%:—t(r — %)) |o=10

Thus, formula (1) has been satisfied with formula (2). Similarly, we have
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Fig. 1 Distribution of residud stress Fig.2 Line of mathematical model
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My='r J zf‘r[COS( (y*%)) —|—c05(_(y__7))]dydz_0
=¥ Ey—2 b _
i J_JHF["OS( 5= ) + cos 4 5 (v — ) Jdydz = 0

Because of the similarity, we have,

M z(}cos(%m (e 2 N e )

:” 2

M, = .” .chos('zj(.r — ﬁ))dxdz =)

Similarly, formula (1) has been satisfied with formula (3). Hence, we may think that the
formula (1) can be a mathematical model of the welding residual stress.

3 A FORMULA OF NATUREL FREQUENCY OF COMPONENT UNDER THE
INFLUENCE OF RESIDUAL STRESS

Suppose quadrate thin plate in to be simply-supported on four boundaries.

boundary is

Its condition of

F
(W)I:u = 0, (%)1:0 =0
W),_. =0, (%)Fﬂ =0
7 4
FW
(W)y:o == Os (F)y:u = 0
i)
Wyes = 0, Z), 4 =0
4.4
According to Ref. [ 2], differential equation of vibration of thin plate is
J‘W FW .
( =i 2y =gq (5)
Eh® h 5 " . :
where D = 20— bend rigid of the plate, k is thickness of the plate( A is smaller than

other measurement), @ is mass of unit volume of the palte, g is crosswise load of unit face of the

plate, W is deflection and is a constant called
Poisson’s ratio.

Partial forces on z direction are produced
by residual stress on parallel and vertical x ax-
is in the plate when the plate is bend, as
shown in Fig. 3. We have

; W
o,sinf = ¢,0, 0 = Pt
" W
o,sine = o,a, a = —
J ay

Thus, total partical force f. which acts on
dady face and in unit thickness on z direction
is

fe=dutd :
where f..and f,. are given by
S =—o0dy(@+ %dx) + o.dyf
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Fig. 3 Figure of fractional force on z direction
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) FW
=— a_I‘dIdy = == Fdl’dy

&+
fyz =— 0O, 3uzfd‘rdy
therefore, we obtain
F
f.=—0.Z8dzdy — o, . TW rdy
?W
q_,[—uz ?h ’az)dz__h( +o 3’32)_*‘&{[305(_(3’_—))-‘—
COS( Sy — —))]I' irﬂzf + Geos (ﬁ( (6)
using the formulas (5) and (6) ,» main v1brat10nal equatlon is given by
arza‘yz-'- )—i-phW——h{[cos(b(yf ))-l-cos( (y——))]x
EFW FW
—3 IS % } G
W is defmed by
W =W (z, y)cos(®,,t + B) (8)
When we apply the formula (8) to formula (7), main equation of vibrational form is obtained
D'W(z, y) — phw?,W(z, y) = — h{ [cos( Sy — m)) + cos (—(y = ))F% o
Gcos(;(x - ?)) Q}W(.:r, ) (9
W (x, y) is defined by
Wz, y) = 3 3 Ansin(™F)sin(22) (10)

m=In=1

obviously, formula (10) has been satlsﬁed with condition of boundary as shown by formula (4).
When we apply the formula (10) to the equation (9), we have

2 oo oo
D 3 2(—+"—2)2 Apsin (" >s1( Y) — phat, S 3 A, X

m=]ln=1] m=]n=1]

sin(?) (mry) - h[COS(—(y = )) 5 COS(4—“( = —))]F 33 7,{ PR
m=1n=1
in(%2) + hGeos ((z — N33 bzA.,...n sin ("5 )sin (P72) an
m=1n=1 a b

We make the formula (11) times sin(T) » then we integrate formula (11) over z from 0 toa

on its both sides at the same time.

Note:
[sin® ysinEydz = (0 7D (12)
where iis plus round number we have
aRZD b (— = —)ZA sm( ¥y — phm:’;,EA sm( Yy — thn2§ % % X
A [sint= + )+ ain(C——En ] B ZEI?EA [sin(® + ry) + sin(*—4xy)] —
(5 Taa, ., Lein (’”‘3’) + 5 Porth sin(52) (13)

We make the formula (13) times sin('—’—b—) , then we integrate formula (13) over y from 0 to &




Vol.6 No.1 Natural Frequency of Component - 139 -

on its both sides at the same time.
Note;
h -
JTy 0 (n# j)
qun(ﬁ)sln( )dy ST g (14)

where jis plus round number, we have

4 Do + £ya, — Lonata, =~ Do LB, a0+
‘I'z”nZ-j;—(A, it A — R LA+ A
and hence, we have
wh = Q(’_ + g—iﬁ + (;’;;{Z(AH"'Z}_A‘ iy 4 paf R
A erA,,JH;}A.-,, — Avprey .

The formula (15) is applied to natural frequency of component under the influence of residu-
al stress computation.

According to the process of development of the formula (15), we put negative sign in front
of A, when angular sign of A,,, appear negative round number in formula (15) and anguiar sign of
A, is plus round number. For exmple, A, ; can be written as — A; ;. Amount of 4,,, is zero
when an angular sign of A4, is zero.

We have obtianed the function of vibrational form on quadrate thin plate when four boundary

of the thin plats is simply-supported in elasticity
e nnx

W,,,,,—sm(—;) (4) (16)
and a formula of natura] frequency
2 4 m2 2 L4
wmn ==L ( bz) ‘0} (17)

Through contra&stmg formula (15) with formula (17), we know that second item and third
item of formula (15) show influence of residual stress on natural frequency of component.

4 CONCLUSIONS OF THEORY

(1) If other factors are not changed, the larger the residual stress F and G is, the larger the
influence of residual stress is.

(2) If other factors are not changed, the higher the rank number 7 and j are, the larger the
influence of residual stress on frequency is.

(3) If other factors are not changed, the influence of residual stress on frequency of large
density component is smaller than that of the small density ones.

(4) If other factors are not changed, the influence of residual stress on frequency of compo-
nent with large measure a, b is smaller than that with small measure a, &.

These conclusions of theory are of great value of reference to general component, and have
been proved by experiments of modal analysis. We have done contrast experiments of modal anal-
ysis on contrast plate with the welding residual stress to same measures and the same material
plate with no welding residual stress. There are twenty pieces of experimental components. Their
measures are 1 000 mm X 100 mm X 4 mm, 600 mm X 100 mm X 4 mm, 550 mm X 100 mm X 5 mm,
600 mm X 100 mm X 6 mm. We have obtained some conclusions of experiment from these contrast
experiments: (1) If there is welding residual stress, all natural frequencies of component are
changed and the larger the residual stress is, the larger the change is. (2) Change of high rank
natural frquency under the influence of residual stress is larger than that of low rank natural fre-
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quency and the higher the rank number is, the larger the absolute change of natural frequency is.
(3) If other factors are not changed, the influence of the residual stress on frequency of compo-
nent with large measure a, &is smaller than on those with small measure a, . The conclusions of

theory are proved by conclusions of experiments.
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(Edited by Peng Chaoqun)

(From page 129)

(1) High control accuracy. Through
muliple parameter’s comprehensive control,
system’s control mode achieve the zero-drop
control from the original drop control, and the
control accuracy increases and attains system’s
check accuracy from original dead zone control
value.

(2) Fast response. System can begin its
compensation as MCB’s helix angle far below
the original dead zone control value by check-
ing the inclination angular velocity. Since the
inertia of MCB is rather high, the increasing
of the response speed is advantageous to de-
crease the maximum helix angle of MCB.

(3) High reliability. Because adotping
the pressure signal protection, even MCB de-
flects reversely under the inertia effect, it will

not cause vibration.

(4) The system can be operated more
smoothly and steadily.

(5) High compensation efficiency. The
maximum helix angle of MCB decreases great-
ly and the framework’s force condition is im-
proved enomously.
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