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ABSTRACT By means of the theory of composite-modality, the superposition principle of the vibra-
tion mode of the linear system, and the analytical method of the original coordinate, a mathematical

model of transient response to any stimulus for generally viscous damping multi-degree system was es-
tablished. This method not only solves the problem of the transient response of displacement, but also

calculates the transient response of the elastic force or the elastic couple of the system.
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1 INTRODUCTION

So far, in the study of a damped vibration
system, all kinds of damps are simplified as a
viscous damp., i. e. damped force increases
with increasing velocity. When using analyti-
cal method of the modality to solve the prob-
lem of the system response, all kinds of
damps are further simplified as a ratio viscous
damp in order to uncouple the coordinates of
the differential movement equations, thereby
obtain the parameters of the real-modality.
But strictly speaking, the ratio damp could
not appear really. In fact, the generally vis-
cous damp is more popular, thus the compos-
ite-modality parameters of the system are
caused. Of the methods of using the theory of
composite-modality to solve the problem of
the transient response of generally viscous
damping multi-degree system, so far, the
method of state-space is most successful. The
method of the state-space refers to the method
that people change differential movement e-
quations into the form of the state equation.
using the method of the calculation of the
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characteristic value of really general matrix to
get the parameters of composite-modality,
similar to the method of solving the problem
of ratio damped system to uncouple state-e-
quation, finally solve for movement coordinate
of the system by conversion.

This paper applies the theory of compos-
ite-modality and establishes a mathematical
model for solving the transient response of
generally viscous damping multi-degree sys-
tem based on the original coordinate method
for solving the transient response of unviscous
damped multi-degree system.

The basic theory of the method this paper
provided is that by means of the mothod for
solving the composite characteristic value and
composite characteristic vector of the really
general matrix, we can calculate the compos-
ite-modality parameters of the vibration sys-
tem, and using the superposition principle of
the vibration mode of the linear system, we
can obtain the natural decay vibration of the
system, 1. e. the common solution of the ho-
mogeneously differential equation, and further
get the special solution of the nonhomoge-
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neously differential equation, then obtain the
common solution of the nonhomogeneous dif-
ferentiation equation, 1. e. the transient re-
sponse of the system. The character of the
method is that we needn’t do coordinate-un-
coupling and coordinate conversion*of the dif-
ferential equations, needn’t ask the factor ma-
trix of the differential equations to have the
nature of symmetry. We can solve the prob-
lem of differential movement equations and the
one of the elastic force or elastic couple as
well. The process of solving is simple, and
this method can be used widely. The estab-
lished mathematical model can be a good way
for solving transient response of generally lin-
ear discretization system.

2 BASIC MATHEMATICS MODEL

Because there is a linear conversion be-
tween displacement and elastic force or be-
tween angular displacement and elastic cou-
ple. So differential movement equation and
differential elasticity force equations with gen-
erally viscous damping multi-degree system
can be expressed as:

[M]{z}+[CHz} +[K1{x}={Q@@®)} (D
where  as to differential movement equa-
tions, {x} stands for vector of displacement,
[M] for mass matrix, [C] for damp matrix,
[ K] for matrix of digity, {Q(¢)} for matrix of
interruptions outside. Among these matrixes,
[M], [C], and [ K ] are symmetrical. As to
differential elasticity force equations, {x}
stands for vector of elastic force, [M ] for
Wide-Sense mass matrix, [C ] for Wide-Sense
damp matrix, [ K] for Wide-Sense matrix of
digity, {Q()} for Wide-Sense vector of inter-
ruptions outside. [C] and [ K] are unsymmet-
rical matrices.

Homogeneous differentiation equations
that matches eqn. (1) is

M) {x}+[CUx}+[KI{x}={0} (D

Suppose that the form of the solution of
natural vibration is

{x}={z}e" (3)
Substituting eqn. (3) into eqn. (2), we can
get

@[ M]{z}+ulCl{z}+[K]{z})e“=0 (4)
Generally speaking: ¢“+0, so the expression
of the characteristic value problem is

@ [ M]+u[CI+[KD{z}= {0} (5)
as to the {z} that does not equal zero, the
characteristic equation is

la*[M]4+u[Cl+[K]|=0 (6)

In eqns. (5) and (6), u stands for char-
acteristic value, {z} for characteristic vector.
Because [C] and [ K] may be unsymmetric
matrix, so eqn. (5) belongs to the problem of
characteristic value of really general matrix.

As to really general metrix, « and {z} are
complex numbers and they stand for compos-
ite characteristic value and composite charac-
teristic vector, respectively. By means of the
program that solves the problem of the char-
acteristic value of really general matrix, we
can obtain characteristic value and characteris-
tic vector as follows:

# =a-+ 1 (aand 3 are real numbers, i
is unit of imaginary number)

{z}={x}+i{y}

{x} and {y} are real number vector

Suppose that « and « are coupled, com-
plex numbers, {z} and {z} are coupled vec-
tors, it can be proved that « stands for charac-
teristic value too, and {z} stands for charac-
teristic vector that matches «.

3 NUMBERICAL SOLUTION OF EQ-
UATION (1)

3.1 Solution of Natural Vibration Sys-

tem

Suppose that the form of the solution of
the natural vibration system of homogeneously
differential equations, i.e. eqn. (2) is

{x}=e"{z}
Because u and u are both characteristic value,
{z} and {z} are characteristic vector, e “{z}
is the solution of the equations, i.e. eqn. (2),
so the solution of the homogeneously differen-
tial equations is

{x}=Cie"{z}+Cre™{z} (7
where C, and C, stand for complex numbers
respectively, and C, and C, are coupled
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According to the superposition principle
of the vibration mode'!, we may know that
the response of the natural vibration of the
system is

()= 21 (Cela) +Cem) @)

where @ stands for the rate of decay of the
natural vibration; w; stands for the fixed fre-
quence with damp. And it is supposed that
wy=—ap tiw,

Ci=ai+1b; (a; and b; are real numbers)
{Zb}={-l‘1}+i{yk} ({x:} and {yk} are real
vectors)

So egn. (8) can be changed into
{x"}=2[X][E]J[UI{A}—2[XI[EI[ST{B}—
2[YILEILS{A}—2[YI[EI[U1{B} (9)

where [X]=[{x},{x}ses{x.}];
[Y:|=|:{ys}!{y2}v""{yn}:l;
{A}z(alyazy'"!an)T;
{B}=(blybz!‘“9bn)7
e 4 0
WA A
0 T
sinwt ' 0
[S]= sinw,t
0 : sinw,t
cosw,t 0
[U]: COSw,t
0 ; cosw,t

3. 2 Linearization of Any Stimulus by
Cutting

Any stimulus may be treated as a linear
force function according to the period of time.
When the period of time is cut into small e-
nough, enough accuracy of the calculation can
be reached. In order to simplify calculation,
the period of time is cut into equal smaller
ones, suppose that the equal smaller period of
time equals 7', during T',, stimulus is regard-
ed as constant.

According to egn. (1), suppose that any
stimulus matching Wide-Sense coordinate x; is
Q:(¢), as shown in Fig. 1.

Fig.1 Any stimulus matching

Now we take one of the equal smaller pe-
riods of time as At¢;, suppose that stimulus
force equals Q“Y, and Q* =Q,(¢,) =V, =
Constant. where ;= (t;4+¢;,)/2,t,=t;,—
t
So during A¢; , the vector of stimulus force is
0.

Qz(zj )

==

{Q}.'.\:,.=<

Q. (v
v,

‘:2 ={v} (10)

Vol ae)

3.3 In Any Period At;, the Special
Solution of Nonhomogeneously
Differential Equations

In the period At; , because the special so-
lution vector to which the stimulus is corre-

spondent is {x” }, replacing {Q(z)} in eqn. (1)

with {V}, we can get

{x*}=[K] (V) (11

3.4 In Any Period At;, the Common
Solution of The Nonhomogen-
cously Differential Equations

In any period At;, suppose that the tran-
sient response vector of the system is

{x}=~(x15 X9 Xsp >+ x)7

From the character of the linear differen-
tiating equation with constant coefficient, we
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{x}={x"}+{x"} az)
Replacing {x'} and {x" } in eqn. (12) with
eqns. (9) and (11), we can get
{x}=2[X[EJU{A}—2[X][EI[S1{B}—
2[YI[EILSI{A}—2[YI[EJ[UI{B}+
(K] {v} (13)
In eqn. (13), {A} and {B} are decided by
initial conditions and special solution {x*} of
this period Az;. {x} and {x} at the moment
t,_; are initial conditions in the period At; .

can get

3.5 In the Period At;, How to Get the
Expressions of the Integral Con-
stant Vector {A} and (B}

In any period Az; , we place original point
of time at the moment #;_, , that is to say,
when ¢ equlas zero, original point of the time ¢
is moment £;_; .

Suppose that the initial conditions of the
period A¢; are

{25) = Pran Mo e %5 Xus) ™

{io}:{imy —‘lfzov """y -l;nn}’T
the first derivative of eqn. (13) is
{x}=—2[X]([«][EJ[UT+

LEJLLILS DA} +
2[X1([e[EILS]—[EILLIUD (B} +

2[y W[oJ[EILST—[EILLIUD {A}+

2lY N([ALEIUIHLEILLILS D (B} (14)

In eqn. (14)
a, 0
i
0 a,
@, 0
[L] = | e
0 @,

During this period, whent = 0 , we have
LE] =[] U] = [T]; [51= [0

From eqns. (13) and (14), we can get
{xo}=2[X1){A}—2[Y{B}+[K]'{V} (15)
and ({xo}=—2[X][el{A}—2[X][LI{B}—

2[YI[L1{A}+2[Y][e]{B} (16)

From egns. (15) and (16), we can get the

vectors of the integral constant

(B)=[QI"'([FNGI—5 (&}  aD
{a}=[x]([Y1]{B}+{G) (18)

where {c}=%<{xo}-[1<]ﬂ{w);

[QI=[X]La]lXT'[¥ ]+ [¥Y][LIX]'[Y]
+XJL]—[Y][a];
LFl=—=((X1l+[¥ilLDHxX]"

3. 6 Numerical Solution of the Tran-
sient Response

In any period At;, replacing the time

variable in eqn. (13) with a step length of time

T, , we can get the response of the moment

e
{x}, =2[XIET (UL (A} —

2[X]J[E ] [S]{B}—

2YIEJ[S]{A} —2[YIEL[UL{B}+

(K]'{v} (19)
{'i}‘;: —ZEX]([QJEE]T[U]T+

LELLLILSTH{A}+

2[X]([a][EJr[S)r—[EL[LIUI){B}+
2[Y J([a][E]r[STr—[EJ[LI[UID{A}+
2lY J([e][EJr[UTr+[ET[L][S]:){B}

(20)

where

_e Ty 0

e_"le

I:E:]T - = ¥

i O efn ]"‘1

[sinw, T, 0
g sinw,T’; . ;

b 8 sinw, T,

cosw, T’ 0
i, = cosw, T,

0 cosw, T,

Obviously, {x}, and {.{:}‘J are the initial condi-
tions of the period Az;., . In order of gaps of
time, calculating gradually in the way men-
tioned above, we can obtain the response in
the whole time.

4 THEORETICAL TEST OF THE
METHOD

Example 1: for the following equation

1 1 O]f=) [ o o]
1 2 0[sxps+(0 0 1|3x,
0 0 3llxd Lo 1 4 lx
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2 1 0] (% 2
+11 3 0|<x, =<4 sinz 1)

00 4] \xs 6

its initial condition is

{xt=0—1+ —85 —2);

(6} =185 3"

The accurately theoretical solution of
eqn. (21) is

r X, —cost+sint
{xz =< — 3cost 4 2sins (22)
X5 — 2cost -+ 3sint

Suppose that the stride of time T, is
7/80 , using the program and calculating
{x;, x;, x;} at the 120 different points of
time, we can get the result of the calculation.
Comparing it with the accurately theoretical
solution, we can find that the derivation be-
tween them ranges from 0 to 0. 043%. This
prove that the theory is correct.

Example 2. How to get the dynamic re-
sponse of a tilting machinery of the 20 oxygen
turning stove in the zero position and in the
starting process with gap.

The mechanical model is shown in Fig. 2.
The results of calculation and test are shown
in Fig. 3.

The relative deviation of the biggest tor-
sional couple is

MZmax — M Imax
=

2Zmax

X 100% = 2.69%

which is caused mainly by the simplification of
the mechanical model and measurement devia-
tion. The calculation basically agrees with the

experiment.
5 g
K,
i S
C,
M.

Fig. 2 Mechanical model

Jo —the whole turning inertia that the hung gear box,
motor and main reduction device make while
turning around the axis of the ear-axis;

J, —all equivalent turning inertia that the rotor of the
motor, coupling, and rotative parts of the main
reduction device produce around the axis of the
ear-axis;

J, —all the turning inertia of furnace body, the liquid
in the furnace, and the large gear;

K, —the equivalent module of rigidity of torsion of the
twistproof equipment of the hung gear box;

K, —the equivalent module of rigidity of torsion that
transmission system of the tilting device and ear-
axis produce in the axis of the ear-axis;

C, —the equivalent damping coefficient of the twist-
proof equipment ; ’

C, —the damped coefficient at the ear-axis.

@» @ » & —the absolute displacement of Jy, Jy, J; 3

M, —the driving couple of the motor;

M, —the rolling couple that resist the turning of the
furnace

M,

M,

M/9.81kN +m
(=]

0 0.25 0.5 0.75 1.0
tls

Fig. 3 The results of calculation and test
M, —the calculation value of the twist-vibration cou-

ple of the ear-axis;
M, —the test value of the twist-vibration couple of the
ear-axis
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