

THEORETIC ENERGY CONSUMPTION OF NONFERROUS METALS BY VACUUM DISTILLATION^①

Liu Rixin, Wu Hua

Beijing General Research Institute of Mining and Metallurgy, Beijing 100044

Dai Yongnian

Kunming University of Science and Technology, Kunming 650093

ABSTRACT The expressions of heat of evaporation for metals at different temperatures were deduced from Clausius-Clapeyron equation and the total change of enthalpy. Those of Pb, Cd and Zn were calculated. Results showed that theoretic energy consumption decreased a little with the decrease of evaporation temperature, which can be used to determine the energy demand while these metals are distilled at different process temperatures and pressures.

Key words energy consumption heat of evaporation vacuum distillation

1 INTRODUCTION

Vacuum metallurgy has some advantages such as low process temperature, high evaporation temperature and good separation efficiency.

It has become the main means of reforming conventional nonferrous metals metallurgy and the recovery of nonferrous metal wastes.

Since it is still considered that vacuum metallurgy is an expensive process and that the energy consumption of which is too high for it to be widely used in nonferrous-metals metallurgy, it is necessary for us to calculate the heat of evaporation and theoretic energy consumption of nonferrous metals at different evaporation temperatures.

2 CALCULATION METHODS

Generally speaking, heat of evaporation increases with the decrease of evaporation temperature (pressure).

When evaporation temperature T_v is less than the normal boiling temperature T_b , according to Clausius-Clapeyron equation, we have the following equation:

$$\frac{dp}{dT} = \frac{\Delta H_v}{T(V_g - V_i)} \quad (1)$$

because $V_g \gg V_i$, $V_g - V_i \approx V_g$, so:

$$\frac{dp}{dT} = \frac{\Delta H_v}{TV_g} \quad (2)$$

where ΔH_v is the heat of evaporation, J/g; p is the pressure, Pa; V_g is the mole volume of gas; V_i is the mole volume of liquid; T_v is the evaporation temperature, K; T_b is the normal boiling temperature, K.

We then further assume the vapor to be ideal and replace V_g by RT/p , as a result, Eqn. (2) becomes:

$$\frac{dp}{dT} = \frac{\Delta H_v}{RT^2} \quad (3)$$

The heat of evaporation at temperature T_v ($T_v < T_b$) can be deduced:

$$\Delta H_v(T_v) = \Delta H_v(T_b) \frac{T_v^2(d\ln p/dT)T_v}{T_b^2(d\ln p/dT)T_b} \quad (4)$$

Theoretic energy consumption Q is the total change of enthalpy from 298 K to T_v . When $T_v < T_b$,

$$Q = \int_{293}^{T_m} C_{p,s}(t)dt + \Delta H_m + \int_{T_m}^{T_v} C_{p,l}(t)dt + \Delta H_v(T_v) \quad (5)$$

When $T_v > T_b$,

$$Q = \int_{293}^{T_m} C_{p,s}(t)dt + \Delta H_m + \int_{T_m}^{T_b} C_{p,l}(t)dt + \Delta H_v(T_b) + \int_{T_b}^{T_v} C_{p,g}(t)dt \quad (6)$$

where $C_{p,s}$, $C_{p,l}$, $C_{p,g}$ are the specific heat of solid, liquid and gas respectively, $J/g \cdot K$; ΔH_m is the heat of fusion, J/g ; R is gas constant.

3 RESULTS AND DISCUSSION

As an example, we calculated the heat of evaporation and the theoretic energy consumption of Pb, Cd and Zn at vacuum. Their thermodynamic data^[1-3] are as follows.

For lead:

$$C_{p,s} = 0.113 + 4.68 \times 10^{-5} T \quad (298 \sim 600 K) \quad (7)$$

$$C_{p,l} = 0.155 - 1.33 \times 10^{-5} T \quad (600 \sim 1400 K) \quad (8)$$

$$C_{p,g} = 0.123 + 9.69 \times 10^{-6} T \quad (1400 \sim 2013 K) \quad (9)$$

$$\Delta H_m = 23.01$$

$$\Delta H_v(T_b) = 854.89$$

$$\lg p_i^0 = -10130/T_v - 0.985 \lg T_v + 13.285 \quad (10)$$

For cadmium:

$$C_{p,s} = 0.1975 + 1.09 \times 10^{-4} T \quad (298 \sim 594 K) \quad (11)$$

$$C_{p,l} = 0.264$$

$$C_{p,g} = 0.185$$

$$\Delta H_m = 56.91$$

$$\Delta H_v(T_b) = 889.11$$

$$\lg p_i^0 = -5919/T_v - 1.257 \lg T_v + 14.412 \quad (12)$$

For zinc:

$$C_{p,s} = 0.336 + 1.727 \times 10^{-4} T \quad (298 \sim 692 K) \quad (13)$$

$$C_{p,l} = 0.4855 - 3.528 \times 10^{-5} T \quad (692 \sim 1122 K) \quad (14)$$

$$C_{p,g} = 0.318$$

$$\Delta H_m = 112.58$$

$$\Delta H_v(T_v) = 1593.59 - 0.1433 T_v \quad (15)$$

$$\lg p_i^0 = -6620/T_v -$$

$$1.225 \lg T_v + 14.465 \quad (16)$$

where p_i^0 is the vapor pressure of the pure metals, Pa.

Using the above data of $\Delta H_v(T_b)$, T_b , $(d \ln p / dT)T_v$ and $(d \ln p / dT)T_b$ derived from pressure equation, we got the heat of evaporation of Pb, Cd and Zn at different temperatures. The calculated results are shown in Table 1.

Table 1 Heat of evaporation of lead, cadmium and zinc at vacuum

T_v /K	$\Delta H_{v,Pb}$ /J $\cdot g^{-1}$	$\Delta H_{v,Cd}$ /J $\cdot g^{-1}$	$\Delta H_{v,Zn}$ /J $\cdot g^{-1}$
773	884.0	917.6	1842.7
823	884.1	911.9	1835.5
873	883.9	906.3	1828.4
923	883.5	901.0	1821.2
973	882.7	895.6	1814.1
1023	881.8	890.4	1806.9
1073	880.7	889.1	1799.7
1123	879.5	889.1	1792.6
1173	878.2	889.1	1785.4
1180	878.1	889.1	1784.4

Expressing ΔH_v as the function of T_v , we have:

For lead:

$$\Delta H_{v,Pb} = 905.9 - 0.02452 T_v \quad (17)$$

For cadmium:

$$\Delta H_{v,Cd} = 1001.0 - 0.1077 T_v \quad (18)$$

For zinc:

$$\Delta H_{v,Zn} = 1593.59 - 0.1433 T_v \quad (19)$$

Using the above data, we can integrate Eqns. (5) and (6) to obtain the theoretic energy consumption of Pb, Cd and Zn. The calculated results are listed in Table 2.

Theoretic energy consumption has a little decrease with the decrease of evaporation temperature. There is no or little waste gas while crude metals are refined by vacuum distillation. Vacuum system is used to maintain the pressure of system only. Therefore, the energy consumption of vacuum system is small. The total energy consumption under vacuum may not be greatly larger than that in atmos-

Table 2 Theoretic energy consumption of evaporation of lead, cadmium and zinc by vacuum distillation

T_v /K	Q_{Pb} /J · g ⁻¹	Q_{Cd} /J · g ⁻¹	Q_{Zn} /J · g ⁻¹
773	975.8	1 094.7	2 160.5
823	983.1	1 102.2	2 176.2
873	990.1	1 109.9	2 191.8
923	996.8	1 117.7	2 207.3
973	1 003.2	1 125.6	2 222.8
1 023	1 009.4	1 133.6	2 238.1
1 073	1 015.4	1 141.7	2 253.4
1 123	1 021.2	1 150.1	2 268.6
1 173	1 026.9	1 158.5	2 283.6
1 180	1 027.8	1 159.5	2 285.7

phere distillation. Because process temperature at vacuum is greatly lower than that under atmosphere pressure, it will reveal lots of advantages in future application.

4 SUMMARY

The expressions of heat of evaporation for metals at different temperatures were deduced from Clausius-Clapeyron equation and the total change of enthalpy. Those of Pb, Cd and Zn were calculated. Results showed that theoretic energy consumption decreased a little with the decrease of evaporation temperature, which can be used to determine the energy demand while these metals are distilled at different process temperatures and pressures.

REFERENCES

- 1 Nesmeyanov A N. Vapour Pressure of the Chemical Elements. Amststerdam: Elsevier Publishing Company, 1963.
- 2 Ye Dalun. A Handbook of Inorganic Thermochemistry Data (in Chinese). Beijing: Metallurgical Industry Press, 1979.
- 3 Xu Caidong, Liu Tong, Wang Dacheng. Physical Chemistry of Zinc Metallurgy (in Chinese). Shanghai: Science and Technology Publishing House, 1979.

(Edited by Li Jun)