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Table 1  Chemical compositions of TiAl alloy (mass

fraction, %)

Al Fe C N H O Ti

35.04 0.052 0.014 0.008 0.005 0.08 Bal.

PR YE 256 15 435 ] Gleeble—3500 7R AR I
B, SEEGHT AR AT RA I LA EAE 8 mmX 12 mm
/N EAEAARCRRE, FRAEFLP NG I T 0.2 mm SRR UIAE,
F B T A s T ) A e Sk 5 R 2 e 1 (1)
JEE ., SSRGS TZRBEWE 1 R, EESN 4
AN B, RO PRI FEAERA D R4E AT
AR T N 1273 1323, 1373, 1423, 1473, 1523 K,
[ ASTHZ A 0,001+ 0.01, 0.1, 15" LLAJELAE &N 50%.
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Fig. 1 Hot compression process flow diagram for TiAl alloy
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Fig. 2 True stress—true strain curves of TiAl alloy under different deformation conditions: (a) 1273 K; (b) 1323 K; (¢) 1373 K; (d)

1423 K; (e) 1473 K; () 1523 K
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Fig. 3 Linear fitting relationships among different variables:
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(¢) In[¢/D(T)]—In{sinh[a'cp / E(T)]}
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Table 2 6th polynomial coefficients of material parameters

a',InB"and n’'

a' In B’ n'
ay=606.016 by=27.708 co=5.474
a;=—4214.035 b=31.132 c1=—25.445
a;=37349.172 by=—224.824 c,=151.139
a;=—161296.892 b3=906.955 c;=—548.016
as=368112.699 bs=—1938.682 c4=1150.377
as=416822.520 bs=2056.564 cs=—1248.772
ag=184212.012 b=—854.727 c=540.176
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Fig. 6 Processing maps of TiAl alloy at strain ¢=0.1(a) and
£=0.69(b)
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Physical constitutive model and processing map of TiAl alloy

REN Shu-jie"2, WANG Ke-Iu', LU Shi-giang', LIU Da-bo?, TIAN Ye?, LUO Fei®

(1. School of Aerospace Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China;
2. Beijing Institute of Aeronautical Materials, Beijing 100095, China)

Abstract: Hot deformation behavior of TiAl alloy was studied at the temperature range of 1273—1523 K, strain rate range
of 0.001-1 s and maximum deformation degree of 50% with thermal simulator. The characteristics of the flow stress
curve were analyzed. The physical constitutive model based on strain compensation was constructed, which took into
account the relationship between elastic modulus and self-diffusion coefficient and temperature for TiAl alloy. The
suitable thermal processing parameter of the alloy were established by processing maps based on dynamic material model
(DMM). The results show that TiAl alloy has positive strain rate sensitivity and negative temperature sensitivity, and the
flow stress curves are mainly characterized by dynamic recrystallization softening mechanism. The predicted values of
the physical constitutive model are in good agreement with the experimental values. According to the analysis of
processing maps for the alloy, the range of appropriate thermal processing parameters are 1360—1523 K and 0.001-0.02
s

Key words: TiAl alloy; physical constitutive model; processing map; flow stress

Foundation item: Project(YC2016033) supported by the Graduate Student Innovation Foundation of Nanchang
Hangkong University, China; Project(51164030) supported by the National Natural Science
Foundation of China; Project(GJJ160683) supported by the Education Commission Foundation of
Jiangxi Province, China

Received date: 2018-10-09; Accepted date: 2019-02-26

Corresponding author: WANG Ke-lu; Tel: +86-13133804266; E-mail: wangkelu@126.com

(#wiE  RiRH)



