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Abstract: The metal futures price fluctuation prediction model was constructed based on symbolic high-frequency time
series using high-frequency data on the Shanghai Copper Futures Exchange from July 2014 to September 2018, and the
sample was divided into 194 histogram time series employing symbolic time series. The next cycle was then predicted
using the K-NN algorithm and exponential smoothing, respectively. The results show that the trend of the histogram of
the copper futures earnings prediction is gentler than that of the actual histogram, the overall situation of the prediction
results is better, and the overall fluctuation of the one-week earnings of the copper futures predicted and the actual
volatility are largely the same. This shows that the results predicted by the K-NN algorithm are more accurate than
those predicted by the exponential smoothing method. Based on the predicted one-week price fluctuations of copper
futures, regulators and investors in China’s copper futures market can timely adjust their regulatory policies and

investment strategies to control risks.
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1 Introduction

The price volatility, yield modeling and
prediction of financial futures market trends
constitute the main barriers to making accurate
predictions of the capital market, as they provide a
theoretical basis for financial pricing, multi-asset
allocation, and financial risk management. The
daily, weekly and monthly data of lower frequency
were used to indirectly describe financial market
price and yield fluctuations by
modeling the variance in earning conditions. In
recent years, the acquisition of big data and
high-frequency data have been possible with the
development of financial technologies. The
modeling, measurement and prediction of
fluctuations in financial assets based on big data
and high-frequency data have become a new focus

fluctuations

of research. High-frequency data were mainly
modeled based on realized volatility trends [1—4] as
proposed by ANDERSEN and BOLLERSLEV [2]
and nonparametric methods were mainly used to
measure high-frequency fluctuations to avoid
parameter estimation difficulties. After converting
fluctuations into an observable time series based on
realized wave theory, a high-frequency time series
can be modeled using the conventional time series
techniques: the first realized volatility methods
developed include the autoregressive moving
average model (ARMA) and the heterogeneous
autoregressive model (HAR) [5,6]. GONG and
LIN [7] studied structural breaks and volatility
forecasting in the copper futures market. KANG
and YOON [8] used the FIAPARCH model to test
the long-term memory characteristics of high-
frequency data on KOSPI 200 in Korea, and
WANG [9] studied high-frequency data from the
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Financial Times 100 Index and found the predictive
ability of his HAR-RV model to be superior to that
of other traditional conditional fluctuation models.
ZHU et al [10—13] used the commodity spillover
index model to empirically test price linkage
changes in copper futures for major futures
markets, analyzed the copper futures market and
concluded the price fluctuations in China’s copper
futures market. DAW et al [14] constructed a price
prediction model with high-frequency copper
futures data of Shanghai measured at intervals of
5 min. However, all of the future trading variables
and volatility were predicted based on point
predictions, so certain limitations in accurately and
comprehensively revealing laws that govern
high-frequency fluctuations in financial assets are
shown. SHI et al [15] did empirical research to
investigate the relationship between trading volume
components and various realized volatility using
1 min high-frequency data of Shanghai copper and
aluminum futures. WANG et al [16] constructed a
structural vector autoregression (SVAR) model to
investigate the direction and strength of the effects
of influence factors on the international gold futures
prices and the variance decomposition approach
(VDA) was used to compare the contributions of
these factors.

To make up for the shortcomings in overall
fluctuations in financial asset prices and return
rates, symbolic time series were widely used to
analyze the overall distribution of financial asset
prices and yield fluctuations and their volatility.
Symbolic time series are new data analysis tools
based on the theory of nonlinear dynamics
developed from symbolic dynamics theory, chaotic
time series analysis methods and information theory.
The method is insensitive to noise, disturbances, etc.
and dynamic characteristics of a system can be
maintained such as correlation, periodicity, and
complexity, which greatly improve the stability of
financial data analysis. Symbolic time series have
long been used in the fields of natural science and
engineering [17—19]. In recent years, they have
gradually been applied to researching on capital
markets and economics. BRIDA and RISSO [20]
classified US listed companies with asset returns
and transaction volumes to determine stock market
structures using symbolic time series and multi-
dimensional minimum span trees. BRIDA et al [21]
studied the synergistic motion relationship between

time series of different exchange rates and the
contagiousness of currency crises using symbolic
time series and hierarchical trees. XU and
HUANG [22] introduced symbolic time series to
empirically analyze the earning series of six stock
indices, determined the main change patterns of
each index’s earnings, and predicted earnings based
on major trends. ARROYO and MATE [23]
proposed an exponential smoothing method based
on a histogram algorithm to predict the histogram
series. ARROYO and MATE [24] used the K-NN
algorithm to predict the histogram series, applied
this method to studying financial data and found the
prediction results of K-NN algorithm to be more
accurate than those predicted using other models.
XU [25] combined a symbolic time series analysis
with the K-NN algorithm to propose a prediction
method for the overall distribution of high-
frequency financial fluctuations based on a
symbolic time series histogram. XU and SHEN [26]
constructed a financial anomaly fluctuation model
based on the symbolic time series method and
empirically analyzed the effectiveness relationships
of user markets. LIU and GONG [27] analyzed
time-varying volatility spillovers between the crude
oil markets using a new method. LI and LIANG [2§]
constructed a model to measure time series
similarities in  numerical symbols  and
morphological features.

In the context of the new normal of China’s
economy, price fluctuations in the metal futures
market are becoming more frequent and intense.
Therefore, it is particularly important to predict the
overall volatility of a cycle of metal futures prices.
However, little has been done on this issue in the
existing research. Therefore, an in-depth study on
the overall one-week volatility in the metal futures
price was conducted. Taking Shanghai’s copper
futures market as an example, five-time-sharing
transactions data on copper futures from July 2014
to September 2018 was used as a sample, the
fluctuation series of copper futures were
symbolized and the distribution of the symbolic
series was visualized with a symbolic series
histogram. Then the overall distribution of high-
frequency copper futures price fluctuations was
predicted by the K-NN algorithm and exponential
smoothing respectively and in turn the feasibility
and effectiveness of the new method were verified.
Compared with previous prediction models, the
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model proposed in this study has higher prediction
accuracy.

2 Framework of high-frequency symbolic
time series of price fluctuation
predictions

2.1 Theoretical modeling for symbolic time series
of price fluctuations

The conversion of raw data for price
fluctuation predictions is a process of symbolization
that uses symbolic time series to conduct predictive
analyses. Raw data used for price fluctuation
predictions have basic global attributes: certainty,
complexity, periodicity, and so on. To compromise
the complexity and periodicity of the raw data, the
symbolization of time series should be divided into
the following steps. First, segment the phase space
of the original data finitely. Then, convert it into a
series of symbols including only a limited number
of values by assigning a simple symbol to each
series segment. The focus of price fluctuation
symbolization is to determine the segmentation
position by equal probability segmentation and to
then determine the number of price fluctuation

symbols.
Given the price fluctuation time series t={¢,
t,, ***, ty} and segmentation position p={py, p», ***,

Pn+1}, the symbolic series of price fluctuations is
recorded as s={si, s;, ***, sy}, and then the price
fluctuation symbolization rule is s={j—1|p<t;<pj:1,
i=1,2, =, n,j=1,2, -+, N}. To calculate statistics
for the symbolic series of price fluctuations more
easilyy, we encode them and determine an
appropriate word length, take a continuous symbol
from the symbolic time series of price fluctuations
to form a word, and employ modified Shannon
entropy. For a series with n symbols and a word
length of L, the modified Shannon entropy formula
is written as

1
Ib N,

obs

H(L)= 2 Bub R, M
where Ny is the number of different words
appearing in the symbolic series of price
fluctuations. Rather, the number of words whose
probability of occurrence is nonzero, Nows<n", i is
the number of the word, and P;; is the probability
of the ith word with a word length of L appearing.
(1) Let the word length be L, which is a variable.
Draw L consecutive symbolic data in order from the

symbolic series of price fluctuations {s;} to
compose a word and to form a new sequence,
which is recorded as {sySp+1°**Spiz-1, =1, 2, -,
N+1+L}. (2) Encode {spSpe1***Sper—1, k=1, 2, ==+,
N+1+L}, and then we have {CJC=spn’+
Sgep ol et k=1, 2, +++, N+1-L }, which is
the coding sequence formed by the decimal
sequence code. (3) Calculate the probability values
of different words and the number of words with
nonzero probability when the number of symbols is
n, and the word length is L according to the decimal
coding sequence {C,}. Equation (1) is used to
calculate the modified Shannon entropy value
corresponding to different word lengths L, and then
the word length corresponding to the lowest entropy
value is what should be selected.

After selecting an appropriate word length,
here we determine the probability of each word
occurring to facilitate the prediction of the symbolic
time series of the next cycle of price fluctuations.
As a result, the price series of metal futures are
symbolized and the probability distribution
histograms for each different wave pattern are
obtained.

2.2 K-NN prediction algorithm for symbolic time
series of price fluctuations
2.2.1 Principles of K-NN prediction algorithm for
symbolic time series of price fluctuations

This study uses K-NN (K-Nearest Neighbors)
as the prediction tool of the price fluctuation
histogram time series. When most of the k most
similar samples in the feature space are of a certain
category, the sample also belongs to this category.
In the K-NN algorithm, the selected neighbors are
objects that have been correctly classified. Since the
selection of dimensions often affects the accuracy
of results when using the K-NN algorithm for
predictions, the G-P method is used to obtain the
best dimension by phase space reconstruction.
(1) Construct a histogram time series of price
fluctuations hy, where =1, 2, -, n, according to
which construct a d-dimensional histogram vector

time series hx/d where hx’,, =( he o hy s by ),
t=d, *+, n; (2) Calculate the distance between the
histogram vector hx; =(hg , he o s b ),
which is closest to {z } and all other

d-dimensional histogram vectors. The formula is

1 d
then: D(hy.h )= EZ: D(h,_ .h, );(3) Calculate
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the distance between h,, and each hd
=11, T-2,
vectors which are the closest to h ¥ and which are
. (4) According to

the k£ nearest hlstogram Vectors of price fluctuations

(where
d) accordlng to step 2, and select &

marked as h,, , hd , 0,

obtained in step 3, take the weighted average of
h.  histogram variables of the k vectors, and the

XTp

final predicted value flxM is then
K
z Xy + 1
oy = @, =&+ Dby ) 2)
Wy

k=1

where ¢ is 107, mainly to prevent the distance
between the two series histogram sequences of
price fluctuations being valued at zero. D(ﬁxm) is
the distance, hy, . is a variable of the next

histogram of price fluctuations of the continuous
subsequence hd , and w, is the Welght of the

neighbor p, Whlch satisfies @,>0 and Za) =1.
p=l1
Assuming that all price fluctuation neighbors have
the same weight, w,=1/k.
2.2.2 Distance of symbolic histogram sequence of
price fluctuations

In applying the K-NN algorithm, the selection
of a formula measuring the distance between
symbolic histogram sequences of price fluctuations
is particularly important. We use the Euclidean

distance formula for two symbol sequence
histograms X and Y written as

- 2
Ow (D)= D (X;~Y) 3)

i=1

The probability of occurrence of the word 7 in
histograms X and Y, K is the total number of all
possible words in X and Y, and L is the word length.
Ox(L) measures the distance between two
histograms by measuring the difference between the
probabilities of all words that could be included in
the two histograms of price fluctuation symbol
sequences. The shorter the distance is, the more
similar the dynamic characteristics of the two
sequences are. Therefore, Oxy(L) can be used to
measure the similarities between two symbol
sequences of price fluctuations.

The symbolic histogram sequence of price
fluctuations is composed of symbolic sequence
histograms observed at different time. For two

symbolic histogram series of the same time length
d:X0={f, =1,2, -, d}, XI={], =1, 2,
d}, where x/={Al, 4. =+, A} and ¥ = (2,
A, ==+, A} . The Euclidean norm is defined as

O(ngXq \/ ii(ﬂf _ﬂ'i? )2 (4)
t=1 i=1

2.2.3 Selection of the best dimension m of price
fluctuations

Dimension m is an important variable in the
application of the K-NN algorithm. The key point
of the selection is to delay embedding for efficient
spatiotemporal conversion. Let the time series of
price fluctuations observed be xi, x;, **
appropriately select a time delay value 7. Construct
an m-dimensional phase space of price fluctuations,
the vector of which is X=(X;, Xi;, ***, Xitgm-1)), i=1,
2, **+, N, N=n—(m—1)z. n is the number of points in
the original time series of price fluctuations. The
method described above is used to construct N
m-dimensional vectors, and m is then called the
embedded dimension. When m>2d+1 (d is the
dimension of the attractor in the original space), the
trajectories described by N vectors in the
m-dimensional phase space can reproduce
geometric features of the original attractors. The
single variable sequence of price fluctuations can
reconstruct overall properties of the system due to
interactions that occur between various variables in
a nonlinear system. A change in a variable must be
affected by other variables (of course, the degree of
strength will vary). For long-term observations, the
univariate sequence must contain information of
other variables involved in the dynamic system.
When the data are sufficient and without noise
interference and when the chosen embedding
dimension m and delay time t are appropriate, it
should be possible to grasp the overall situation. By
examining how the number of points in the radius-k
sphere embedded in space decreases to zero with
the radius, the value of the fractal dimension can be
estimated from the experimental time series. First,
define the correlation function C(r) as

ZH(F—IX -X;D (5)

I¢J

, X, and

C(r)= N(N

where 6(x) is a step function defined as

1, 0
mw={0110 (©)
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where |X;—X)| represents the distance between state
vectors X; and Y; in Euclidean space, N denotes the
number of points in the phase space, and C(r)
represents the ratio of the number of pairs of points
in the phase space positioned less than » from all
possible pairs of points, denoting the probability of
the distance between two points on the attractor in
the phase space being less than » and characterizing
the degree of point convergence. When a constant
D, causes the correlation function C(r) to obey the
following scale law, it essentially depicts
similarities that may exist in phase space. When

D,

lim C(r)oor™2, then D, is called the correlation
r—0

dimension, and the reconstructed attractor has the
fractal feature. The correlation dimension D, is
defined as

D, =lim (7)

Therefore, to obtain a constant correlation
dimension D, in a system, we can draw a double
logarithmic curve of In C(r) relative to Inr, from
which we find the slope of a relatively long and
nearly straight segment (forming the scale-free
region). When the slope of the curve gradually
converges to a saturated value as the embedding
dimension m gradually increases, then the limit is
called the true correlation dimension D,. For a
purely stochastic process, the slope will increase as
the embedding dimension m increases, and it will
not converge to a saturated value. That is, there is
no fractal structure, and the system is not a chaotic
system.

2.3 Exponential smoothing method for price

fluctuation prediction

The purpose of exponential smoothing for
price fluctuation prediction is to smooth out the
time series of price fluctuations to eliminate
irregular and random disturbances using a weighted
average method assuming that the impact of recent
data in time series of price fluctuations on future
is stronger than that of earlier data.
Therefore, when weighting data of a time series of
price fluctuations, the more recent the data area, the
larger the weight and vice versa. This smooths the
data and reflects the influence on the value of the
predicted point in a time series of price fluctuations.
According to smoothing requirements, there may be
one, two or even three rounds of exponential

values

smoothing. Let the symbolic time series of price
fluctuations be x;, x5, x3, ***, xy. As a result, the
recurrence formula for an exponential smoothing
sequence is

S!=ax,_+(1-a)S],, 0<a<l, 1<I<N ®)
S(l) =X
where S! represents the value of exponential

smoothing at point ¢, and o is the smoothing
coefficient. The initial value of the recurrence
formula S) is the first item of the common time
series (applicable to a large collection of historical
data points such as 50 or more). If the size of the
historical dataset is small, including 15 or 20 data
points or less, the average of historical data for the
first few weeks can be used as the initial value S, .
These approaches are somewhat empirical and
subjective.

We next discuss the smoothing factor a and
expand the recursive formula to

St1 =ax, +(1- a)S,1 =ax, +(l-a)lax,_; +
(-a)S! ,1=ax, +a(l-a)x, | +(1-a)*S! , =
e=ax,+a(l-a)x,_ +a(l- a)* X+

...+a(1—a)1_1xt72 +(1—0()ZS(1) )

As 0<a<l, coefficient a(l-a) of x;
decreases as i increases. Note that the sum of these

t
coefficients is 1, where > a(l-a) +(1-a) =
i=1

I-(l-a)

1-(I-o) "
formula is a weighted average of the sample values
X1, X2, X3, ***, X;. When we use the recursive formula
to predict price fluctuations, S' is used as the
predicted value of point #+1. The above discussion
shows that weight of x, of time point # most closely
reflecting predicted time point #+1 is a, which is the
largest, and for x,—;, the weight is a(1-a), x; is the
smallest. We find that the formula produces a
weighted average for the original time series when
recent data are considered to have strong impact on
the future while long-term data are considered to
have a limited effect. When the smoothing
coefficient =0, S'=S',=--=S(=x), the
smoothing value of each time point is equal to S
after determining Sj(=x,) . At this point, the
observed value x; of each time point 7 has no effect.
When the smoothing coefficient o=1, S =x,, the
smoothed sequence S is the original time series,

(1-a)' =1.Thus, S in the recursive
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and no processing or smoothing is performed on the
original time series. For the smoothing coefficient
a, the coefficients of x; and x; (i#) cannot be equal
except under the above two extreme conditions.

In summary, when 0<a<1 and is close to 1, the
calculated smoothness value of an exponent of price
fluctuations is less uniform with the original
historical data, and S! of the smoothed sequence
can reflect the actual change to the original time
series relatively quickly. Therefore, for a time series
of price fluctuations with considerable changes or
strong trends, it is suitable to select data with
smoothing coefficients of close to 1 such as a=0.95,
0.90. When 0<oa<1 and the value is close to 0, the
calculated smoothing value will be more uniform
with the original historical data, and the smoothed
sequence will not be sensitive to the original time
series. Therefore, for time series showing few or no
changes in price fluctuations, we should use a
smoothing coefficient close to 0 to render the
weights of the data relatively similar during the
smoothing process.

2.4 Measuring accuracy of symbolization

predictions of price fluctuations

When predicting a high-frequency histogram
sequence {h, } of metal futures pfice fluctuations
whose result is denoted as {h,} , then Athe
prediction error is (h, —h,), but (i, —h,)
cannot discern the quantitative difference between
h, and };x] or how larger the error value is. At
this point, it is necessary to introduce the MDE
(mean distance error) to quantify the error, which is
usually written as

T
MDE ({hy, . h,})=> D! (h, .h,)/T (10)
t=1
where D(h, , };x]) can be different formulas of
distance and T is the number of cycles predicted.
The selection of the error formula often has a great
influence on the accuracy of calculation results. We
compare two relatively mature error formulas.
(1) Mean absolute error

1 N
5MAE = _Z| psimu,k _ptrag,k | (1 1)
N k

(2) Mean square error

1 N
OMAE = W\/Z (psimu,k ~ Ptrag.k )2 (12)
k=1

3 Empirical analysis of symbolic time
series of price fluctuations predictions

3.1 Preprocessing of price fluctuation data

We collect five-time-sharing transaction data
for copper futures from July 2014 to September
2018. Since the delivery month is close to the spot
delivery date, the future price is greatly affected by
the spot price. In our empirical analysis, we use the
daily settlement price of futures contracts created
three months away from the delivery month to form
a continuous price sequence. The futures contracts
have the largest trading volumes and numbers of
market participants and exhibit the most active
levels of trading, which is enough to reflect the
group will of market participants, and the artificial
manipulation of the price can be prevented by the
settlement price. To predict the one-week
distribution of copper futures price fluctuations, the
data are grouped from Monday-Friday where each
week is grouped and data on less than 1000 weeks
are excluded. We obtain 194 sets of transaction data,
each of which forms a weekly sequence, and there
are 284 data points in weekly sequence. The income
at ¢t of the ith week is defined as R,=lg P,—
lg P—y; where i=1, 2, -+, 194, and price
fluctuations are defined as the square of the income
oras v, =R>.

3.2 Obtaining symbol histogram time series of
price fluctuation predictions
First, symbolize the copper futures price
fluctuation sequence of each cycle {v,, =1, 2, -,
2843(i=1, 2, -, 194) via equal probability
division. We adopt 3 symbols and the following
division rules:

0, v; <vys;
Si =1L U3 <U,; SOy (13)

2, U; >0y

where 013 and wvy3 respectively represent the
one-third and two-thirds quantiles of {v,}. Thus, 0,
1 and 2 correspond to low, moderate and high
intervals, respectively, and the copper futures price
fluctuation sequence of each cycle is written as:
{Su, =1, 2, ++-, 284}(i=1, 2, +*+, 194). Then, we
use the minimum entropy rule of modified Shannon
entropy to determine the appropriate word length as
in Eq. (1) to apply a word length and to render the
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improved Shannon entropy value the lowest under
the determined number of symbols, where L is an
integer among [2,6]. As our goal is to improve the
Shannon entropy of the weekly symbolic sequence
of copper futures price fluctuations, when
comparing the entropy values of different word
lengths, we can compare mean values of the
entropy of different word lengths as

1 194
D H(L), LE{2, -, 6} (14)

i=1

We find that when the word length L increases,
H(L) decreases continuously, but the rate of
decrease slows. From the limit on the number of
samples of copper futures price series for each cycle,
the word length should be equal to the number
obtained. We calculate the frequency corresponding
to different words when L is equal to the number
obtained from the symbolic sequence of copper
futures price fluctuations of each cycle, {S;, =1,
2, =, 283}1(i=1, 2, -+, 194). In turn, we obtain a
symbolic sequence histogram of copper futures
price fluctuations for each cycle, all of which form
a symbolic histogram time series written as {/,,,
=1, 2, +=+, 194}. The results calculated with the
above method are shown in Table 1.

Table 1 Average entropy of symbolic time series of
copper futures returns

Word length, L

Average entropy, H(L)

2 0.992

3 0.9812
4 0.9667
5 0.9725
6 0.9859

After symbolizing the weekly copper futures
price return, we obtain a symbolized series of
weekly copper futures price returns from 194 weeks
of data. According to the description given above,
word lengths vary from Refs. [2,6], and we then
calculate the weekly Shannon entropy of different
word lengths L and average the entropy values of
all weeks to obtain an average Shannon entropy
value. Table 1 shows that the entropy value
decreases from 2 and then reaches a minimum value
of 0.9667 at L=4, after which the S entropy value
begins to increase again. Thus, L=4 is the best word
length.

3.3 Selecting the best dimension from G-P

algorithm

We use the G-P algorithm to determine the
embedding dimension, and the best dimension is
obtained under the assumed condition of 7=lI.
Figure 1 presents a double logarithmic curve of
In C(7) and In r of the symbolic sequence of copper
futures returns, and Fig. 2 presents a graph of the
correlation dimension. It can be observed from
Fig. 2 that the slope of the double logarithmic
curves of In C(») and In 7 tends to a saturated value
when D,=3.2, at which the geometric attractor of
the system reaches a state of the maximum
saturation. The best embedding dimension is then
calculated based on the best embedding dimension
as m>2D,+1.

In C(r)
I

_10 1 1
=27 -2.6 =2.5 24 =2.3
Inr

Fig. 1 Double logarithmic curve of In C(») and Inr» of
copper futures symbol sequence (C(r) is the probability
that the distance between two points on the attractor in
phase space is less than r)

4.0
35+
3.0}
2.5+

Q2.0
1.5¢
1.0t
0.5}

0 5 10 15 20
m
Fig. 2 Correlation dimension of return symbols time
series (D,, is the limit of the slope of the logarithmic
curve as r approaches 0)
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It can be observed from Fig. 1 and Fig. 2 that
when m is low, the slope of the straight-line
segment of the double logarithmic curve (i.e., the
correlation dimension) increases as m increases.
When m=9-20, the slope of the curve nearly
plateaus at close to 3.26, and the correlation
dimension is saturated for the first time. Therefore,
according to the saturation correlation dimension
approach, the minimum embedding dimension
corresponding to the correlation dimension of 3.26
is int(2D+1)=8.

3.4 Prediction and accuracy of copper futures
price fluctuation measurements
After processing copper futures price data
according to the method shown above, we obtained

a 194-week symbolic time series x,(=1, 2, -+, 194).
Then the symbolic time series for 194 weeks are
divided into two intervals: X }14 ={x1, X2, ***, X184}

for prediction and X} ={xgs, X1z, ***, X104} for
testing. The mean absolute error (MAE) of Eq. (12)
and the mean square error (MSE) of Eq. (13) are
taken as the standard for error calculations in
predicting copper futures price fluctuations. While
making predictions, similarities observed between
copper futures price fluctuation histograms are
measured from the Euclidean distance. To examine
the different prediction results of methods, the
K-NN and exponential smoothing algorithms are
used to process the experimental data on copper

futures price fluctuations, and the 10-week
prediction results for copper futures price
fluctuations are written as Z,"={z,, z,, ***, zo} and

Yelo =LY, Vo)
(1) K-NN algorithm predictions

A comparison of predictions using the K-NN
algorithm based on high-frequency data on copper
futures price fluctuations and actual detection
values is shown in Figs. 3 and 4, where each
histogram corresponds to the one-week symbolic
time sequence of the copper futures return (returns
vary within high, medium and low ranges). Figure 3
reflects the actual value and Fig. 4 reflects the
predicted value.

Figure 4 shows that histogram trends of
predicted copper futures returns are more gradual
than those derived from actual observations, but the
general trends are basically the same. This indicates
that the prediction results are good overall.
However, the probability distribution of fluctuations

represented by each word in the copper futures
return prediction histogram is more gradual than the
real distribution (Fig. 4). This gradual nature may
occur because the predicted histogram reflects a
weighted average of k histograms.

0.030

0.025

0.020

0.015

Frequency

0.010

0.005

0 10 20 30 40 50 60 70 80
Symbol

Fig. 3 Histogram of actual observations

0.030

0.025

0.020

0.015

Frequency

0.010

0.005
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Fig. 4 Histogram of K-NN algorithm predictions

According to Table 2, no matter which metric
is used, the MSE is always an order of magnitude
smaller than the MAE. Thus, the prediction error of
the copper futures return is within an acceptable
range, showing that the K-NN prediction algorithm
presented in this paper is suitable for the return data
on copper futures and for analyzing return
fluctuations of basic metal futures.

(2) Exponential smoothing predictions

In this section, we use the two interval datasets

Table 2 Prediction errors of K-NN algorithm

Metric (N=10, m=8, K=18) Error
MAE 0.4233
MSE 0.0186




Dan WU, et al/Trans. Nonferrous Met. Soc. China 30(2020) 17071716 1715

of the symbolic sequence of the copper futures
return processed above Xji' ={xi, xs, ***, X1z},
and we use X;) ={Xgs, X136, ***, X104} to predict the
10-week symbolic sequence of copper futures
returns. Figure 6 shows a histogram of weekly
predictions. a is a very important parameter when
using the exponential smoothing method, and its
most suitable value is @=0.0355 as obtained with
general statistical tools, at which the error value is
the smallest. It can be observed from Fig. 6 that the
main trends are consistent but are not as optimized
as the results of K-NN prediction algorithm,
indicating that the method still presents
shortcomings in generating symbolic time series of
copper futures returns.
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Fig. 6 Histogram of exponential smoothing predictions

Table 3 presents the prediction error of the
exponential ~ smoothing method, which is
significantly larger than that of the K-NN algorithm
shown in Table 2. Therefore, the exponential
smoothing prediction algorithm is not as effective
as the K-NN algorithm, and the latter is more suited
to addressing symbolic time sequences of copper
futures returns.

Table 3 Prediction error of exponential smoothing

algorithm
Metric (N=10) Error
MAE 0.4240
MSE 0.196

4 Conclusions

(1) The overall error value of predictions of
copper futures price fluctuations falls within an
acceptable range, and thus the symbolic time series
can effectively fit high-frequency fluctuations in
copper futures prices.

(2) The trend of the histogram derived from
the copper futures earnings prediction is gentler
than the actual histogram, the overall situation of
the prediction results is better, and the model has
higher accuracy.

(3) The results predicted by the K-NN
algorithm are more accurate than those predicted by
the exponential smoothing method. The results
show that the overall error value of predictions of
copper futures price fluctuations falls within an
acceptable range, and thus the symbolic time series
can effectively fit high-frequency fluctuations in
copper futures prices.
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