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Abstract: The metal futures price fluctuation prediction model was constructed based on symbolic high-frequency time 
series using high-frequency data on the Shanghai Copper Futures Exchange from July 2014 to September 2018, and the 
sample was divided into 194 histogram time series employing symbolic time series. The next cycle was then predicted 
using the K-NN algorithm and exponential smoothing, respectively. The results show that the trend of the histogram of 
the copper futures earnings prediction is gentler than that of the actual histogram, the overall situation of the prediction 
results is better, and the overall fluctuation of the one-week earnings of the copper futures predicted and the actual 
volatility are largely the same. This shows that the results predicted by the K-NN algorithm are more accurate than 
those predicted by the exponential smoothing method. Based on the predicted one-week price fluctuations of copper 
futures, regulators and investors in China’s copper futures market can timely adjust their regulatory policies and 
investment strategies to control risks. 
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1 Introduction 
 

The price volatility, yield modeling and 
prediction of financial futures market trends 
constitute the main barriers to making accurate 
predictions of the capital market, as they provide a 
theoretical basis for financial pricing, multi-asset 
allocation, and financial risk management. The 
daily, weekly and monthly data of lower frequency 
were used to indirectly describe financial market 
price fluctuations and yield fluctuations by 
modeling the variance in earning conditions. In 
recent years, the acquisition of big data and 
high-frequency data have been possible with the 
development of financial technologies. The 
modeling, measurement and prediction of 
fluctuations in financial assets based on big data 
and high-frequency data have become a new focus 

of research. High-frequency data were mainly 
modeled based on realized volatility trends [1−4] as 
proposed by ANDERSEN and BOLLERSLEV [2] 
and nonparametric methods were mainly used to 
measure high-frequency fluctuations to avoid 
parameter estimation difficulties. After converting 
fluctuations into an observable time series based on 
realized wave theory, a high-frequency time series 
can be modeled using the conventional time series 
techniques: the first realized volatility methods 
developed include the autoregressive moving 
average model (ARMA) and the heterogeneous 
autoregressive model (HAR) [5,6]. GONG and  
LIN [7] studied structural breaks and volatility 
forecasting in the copper futures market. KANG 
and YOON [8] used the FIAPARCH model to test 
the long-term memory characteristics of high- 
frequency data on KOSPI 200 in Korea, and 
WANG [9] studied high-frequency data from the 
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Financial Times 100 Index and found the predictive 
ability of his HAR-RV model to be superior to that 
of other traditional conditional fluctuation models. 
ZHU et al [10−13] used the commodity spillover 
index model to empirically test price linkage 
changes in copper futures for major futures  
markets, analyzed the copper futures market and 
concluded the price fluctuations in China’s copper 
futures market. DAW et al [14] constructed a price 
prediction model with high-frequency copper 
futures data of Shanghai measured at intervals of  
5 min. However, all of the future trading variables 
and volatility were predicted based on point 
predictions, so certain limitations in accurately and 
comprehensively revealing laws that govern 
high-frequency fluctuations in financial assets are 
shown. SHI et al [15] did empirical research to 
investigate the relationship between trading volume 
components and various realized volatility using   
1 min high-frequency data of Shanghai copper and 
aluminum futures. WANG et al [16] constructed a 
structural vector autoregression (SVAR) model to 
investigate the direction and strength of the effects 
of influence factors on the international gold futures 
prices and the variance decomposition approach 
(VDA) was used to compare the contributions of 
these factors. 

To make up for the shortcomings in overall 
fluctuations in financial asset prices and return  
rates, symbolic time series were widely used to 
analyze the overall distribution of financial asset 
prices and yield fluctuations and their volatility. 
Symbolic time series are new data analysis tools 
based on the theory of nonlinear dynamics 
developed from symbolic dynamics theory, chaotic 
time series analysis methods and information theory. 
The method is insensitive to noise, disturbances, etc. 
and dynamic characteristics of a system can be 
maintained such as correlation, periodicity, and 
complexity, which greatly improve the stability of 
financial data analysis. Symbolic time series have 
long been used in the fields of natural science and 
engineering [17−19]. In recent years, they have 
gradually been applied to researching on capital 
markets and economics. BRIDA and RISSO [20] 
classified US listed companies with asset returns 
and transaction volumes to determine stock market 
structures using symbolic time series and multi- 
dimensional minimum span trees. BRIDA et al [21] 
studied the synergistic motion relationship between 

time series of different exchange rates and the 
contagiousness of currency crises using symbolic 
time series and hierarchical trees. XU and  
HUANG [22] introduced symbolic time series to 
empirically analyze the earning series of six stock 
indices, determined the main change patterns of 
each index’s earnings, and predicted earnings based 
on major trends. ARROYO and MATE [23] 
proposed an exponential smoothing method based 
on a histogram algorithm to predict the histogram 
series. ARROYO and MATE [24] used the K-NN 
algorithm to predict the histogram series, applied 
this method to studying financial data and found the 
prediction results of K-NN algorithm to be more 
accurate than those predicted using other models. 
XU [25] combined a symbolic time series analysis 
with the K-NN algorithm to propose a prediction 
method for the overall distribution of high- 
frequency financial fluctuations based on a 
symbolic time series histogram. XU and SHEN [26] 
constructed a financial anomaly fluctuation model 
based on the symbolic time series method and 
empirically analyzed the effectiveness relationships 
of user markets. LIU and GONG [27] analyzed 
time-varying volatility spillovers between the crude 
oil markets using a new method. LI and LIANG [28] 
constructed a model to measure time series 
similarities in numerical symbols and 
morphological features. 

In the context of the new normal of China’s 
economy, price fluctuations in the metal futures 
market are becoming more frequent and intense. 
Therefore, it is particularly important to predict the 
overall volatility of a cycle of metal futures prices. 
However, little has been done on this issue in the 
existing research. Therefore, an in-depth study on 
the overall one-week volatility in the metal futures 
price was conducted. Taking Shanghai’s copper 
futures market as an example, five-time-sharing 
transactions data on copper futures from July 2014 
to September 2018 was used as a sample, the 
fluctuation series of copper futures were 
symbolized and the distribution of the symbolic 
series was visualized with a symbolic series 
histogram. Then the overall distribution of high- 
frequency copper futures price fluctuations was 
predicted by the K-NN algorithm and exponential 
smoothing respectively and in turn the feasibility 
and effectiveness of the new method were verified. 
Compared with previous prediction models, the 
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model proposed in this study has higher prediction 
accuracy. 
 
2 Framework of high-frequency symbolic 

time series of price fluctuation 
predictions 

 
2.1 Theoretical modeling for symbolic time series 

of price fluctuations 
The conversion of raw data for price 

fluctuation predictions is a process of symbolization 
that uses symbolic time series to conduct predictive 
analyses. Raw data used for price fluctuation 
predictions have basic global attributes: certainty, 
complexity, periodicity, and so on. To compromise 
the complexity and periodicity of the raw data, the 
symbolization of time series should be divided into 
the following steps. First, segment the phase space 
of the original data finitely. Then, convert it into a 
series of symbols including only a limited number 
of values by assigning a simple symbol to each 
series segment. The focus of price fluctuation 
symbolization is to determine the segmentation 
position by equal probability segmentation and to 
then determine the number of price fluctuation 
symbols. 

Given the price fluctuation time series t={t1, 
t2, …, tN} and segmentation position p={p1, p2, …, 
pn+1}, the symbolic series of price fluctuations is 
recorded as s={s1, s2, …, sN}, and then the price 
fluctuation symbolization rule is sj={j−1|pi≤tj<pi+1, 
i=1, 2, …, n, j=1, 2, …, N}. To calculate statistics 
for the symbolic series of price fluctuations more 
easily, we encode them and determine an 
appropriate word length, take a continuous symbol 
from the symbolic time series of price fluctuations 
to form a word, and employ modified Shannon 
entropy. For a series with n symbols and a word 
length of L, the modified Shannon entropy formula 
is written as  

, ,
obs

1
( ) lb

lb
 

 i i L i LH L P P
N

                   (1) 

 
where Nobs is the number of different words 
appearing in the symbolic series of price 
fluctuations. Rather, the number of words whose 
probability of occurrence is nonzero, Nobs≤nL, i is 
the number of the word, and Pi,L is the probability 
of the ith word with a word length of L appearing. 
(1) Let the word length be L, which is a variable. 
Draw L consecutive symbolic data in order from the 

symbolic series of price fluctuations {sj} to 
compose a word and to form a new sequence, 
which is recorded as {sksk+1…sk+L−1, k=1, 2, …, 
N+1+L}. (2) Encode {sksk+1…sk+L−1, k=1, 2, …, 
N+1+L}, and then we have {Ck|Ck=sk+Ln0+ 
sk+L−2n

1+…+skn
L−1, k=1, 2, …, N+1−L }, which is 

the coding sequence formed by the decimal 
sequence code. (3) Calculate the probability values 
of different words and the number of words with 
nonzero probability when the number of symbols is 
n, and the word length is L according to the decimal 
coding sequence {Ck}. Equation (1) is used to 
calculate the modified Shannon entropy value 
corresponding to different word lengths L, and then 
the word length corresponding to the lowest entropy 
value is what should be selected. 

After selecting an appropriate word length, 
here we determine the probability of each word 
occurring to facilitate the prediction of the symbolic 
time series of the next cycle of price fluctuations. 
As a result, the price series of metal futures are 
symbolized and the probability distribution 
histograms for each different wave pattern are 
obtained. 
 
2.2 K-NN prediction algorithm for symbolic time 

series of price fluctuations 
2.2.1 Principles of K-NN prediction algorithm for 

symbolic time series of price fluctuations 
This study uses K-NN (K-Nearest Neighbors) 

as the prediction tool of the price fluctuation 
histogram time series. When most of the k most 
similar samples in the feature space are of a certain 
category, the sample also belongs to this category. 
In the K-NN algorithm, the selected neighbors are 
objects that have been correctly classified. Since the 
selection of dimensions often affects the accuracy 
of results when using the K-NN algorithm for 
predictions, the G-P method is used to obtain the 
best dimension by phase space reconstruction.    
(1) Construct a histogram time series of price 
fluctuations 

txh where t=1, 2, …, n, according to 
which construct a d-dimensional histogram vector 
time series d

tx
h  where d

tx
h =(

txh , 
1txh


, …, 
1t dxh

 
), 

t=d, …, n; (2) Calculate the distance between the 
histogram vector  d

Tx
h =(

Txh , 
1Txh


, … , 
1T dxh

 
), 

which is closest to { }
txh  and all other 

d-dimensional histogram vectors. The formula is 

then: 
1 1

1

1
( , ) ( , );d d

T i t iT t

d

x xx x
i

D h h D h h
d    


  (3) Calculate 
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the distance between d
Tx

h  and each d
tx

h  (where 
t=T−1, T−2, …, d) according to step 2, and select k 
vectors which are the closest to d

Tx
h  and which are 

marked as 
1
d
Tx

h ,  
2

d
Tx

h , …, d
Tk

x
h . (4) According to 

the k nearest histogram vectors of price fluctuations 
obtained in step 3, take the weighted average of 

1T pxh


 histogram variables of the k vectors, and the 
final predicted value 

1Txh



 is then 

 

1

1

1

1

,
k

T

K

k T
k

x K

k
k

x

h

















( , )

T Ti n
k x xD h h          (2) 

 
where ξ is 10−5, mainly to prevent the distance 
between the two series histogram sequences of 
price fluctuations being valued at zero. 

1
( )

TxD h



 is 

the distance, 
1TP

xh


 is a variable of the next 
histogram of price fluctuations of the continuous 
subsequence d

Tp
x

h , and ωp is the weight of the 

neighbor p, which satisfies ωp≥0 and 
1

1
k

p
p




 . 

Assuming that all price fluctuation neighbors have 
the same weight, ωp=1/k. 
2.2.2 Distance of symbolic histogram sequence of 

price fluctuations 
In applying the K-NN algorithm, the selection 

of a formula measuring the distance between 
symbolic histogram sequences of price fluctuations 
is particularly important. We use the Euclidean 
distance formula for two symbol sequence 
histograms X and Y written as 
 

2

1

( ) ( )
K

XY i i
i

Q L X Y


                      (3) 

 
The probability of occurrence of the word i in 

histograms X and Y, K is the total number of all 
possible words in X and Y, and L is the word length. 
OXY(L) measures the distance between two 
histograms by measuring the difference between the 
probabilities of all words that could be included in 
the two histograms of price fluctuation symbol 
sequences. The shorter the distance is, the more 
similar the dynamic characteristics of the two 
sequences are. Therefore, OXY(L) can be used to 
measure the similarities between two symbol 
sequences of price fluctuations. 

The symbolic histogram sequence of price 
fluctuations is composed of symbolic sequence 
histograms observed at different time. For two 

symbolic histogram series of the same time length 
d: { ,p p

tdX x  t=1, 2, …, d}, { ,q q
tdX x  t=1, 2, …, 

d}, where 1 2{ , , p pp
t t tx   … , }p

Kt  and q
tx = 1{ ,q

t  

2 ,q
t …, }q

Kt . The Euclidean norm is defined as 
 

2

1 1

1
( , ) ( )

d K
p q p q

it itd d
t i

O X X
d

 
 

              (4) 

 
2.2.3 Selection of the best dimension m of price 

fluctuations 
Dimension m is an important variable in the 

application of the K-NN algorithm. The key point 
of the selection is to delay embedding for efficient 
spatiotemporal conversion. Let the time series of 
price fluctuations observed be x1, x2, …, xn and 
appropriately select a time delay value τ. Construct 
an m-dimensional phase space of price fluctuations, 
the vector of which is Xi=(Xi, Xi+τ, …, Xi+(m−1)τ), i=1, 
2, …, N, N=n−(m−1)τ. n is the number of points in 
the original time series of price fluctuations. The 
method described above is used to construct N 
m-dimensional vectors, and m is then called the 
embedded dimension. When m≥2d+1 (d is the 
dimension of the attractor in the original space), the 
trajectories described by N vectors in the 
m-dimensional phase space can reproduce 
geometric features of the original attractors. The 
single variable sequence of price fluctuations can 
reconstruct overall properties of the system due to 
interactions that occur between various variables in 
a nonlinear system. A change in a variable must be 
affected by other variables (of course, the degree of 
strength will vary). For long-term observations, the 
univariate sequence must contain information of 
other variables involved in the dynamic system. 
When the data are sufficient and without noise 
interference and when the chosen embedding 
dimension m and delay time τ are appropriate, it 
should be possible to grasp the overall situation. By 
examining how the number of points in the radius-k 
sphere embedded in space decreases to zero with 
the radius, the value of the fractal dimension can be 
estimated from the experimental time series. First, 
define the correlation function C(r) as  

1
( ) lim ( | |)

( 1) i j
N i j

C r r X X
N N


 

  
          (5) 

 
where θ(x) is a step function defined as 
 

1, 0
( )

0, 0

 

 

x
x

x



  

                           (6) 
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where |Xi−Xj| represents the distance between state 
vectors Xi and Yj in Euclidean space, N denotes the 
number of points in the phase space, and C(r) 
represents the ratio of the number of pairs of points 
in the phase space positioned less than r from all 
possible pairs of points, denoting the probability of 
the distance between two points on the attractor in 
the phase space being less than r and characterizing 
the degree of point convergence. When a constant 
D2 causes the correlation function C(r) to obey the 
following scale law, it essentially depicts 
similarities that may exist in phase space. When 

2

0
lim ( ) D

r
C r r


 , then D2 is called the correlation 

dimension, and the reconstructed attractor has the 
fractal feature. The correlation dimension D2 is 
defined as 
 

2
0

ln ( )
lim

lnr

C r
D

r
                           (7) 

 
Therefore, to obtain a constant correlation 

dimension D2 in a system, we can draw a double 
logarithmic curve of ln C(r) relative to ln r, from 
which we find the slope of a relatively long and 
nearly straight segment (forming the scale-free 
region). When the slope of the curve gradually 
converges to a saturated value as the embedding 
dimension m gradually increases, then the limit is 
called the true correlation dimension D2. For a 
purely stochastic process, the slope will increase as 
the embedding dimension m increases, and it will 
not converge to a saturated value. That is, there is 
no fractal structure, and the system is not a chaotic 
system. 
 
2.3 Exponential smoothing method for price 

fluctuation prediction 
The purpose of exponential smoothing for 

price fluctuation prediction is to smooth out the 
time series of price fluctuations to eliminate 
irregular and random disturbances using a weighted 
average method assuming that the impact of recent 
data in time series of price fluctuations on future 
values is stronger than that of earlier data. 
Therefore, when weighting data of a time series of 
price fluctuations, the more recent the data area, the 
larger the weight and vice versa. This smooths the 
data and reflects the influence on the value of the 
predicted point in a time series of price fluctuations. 
According to smoothing requirements, there may be 
one, two or even three rounds of exponential 

smoothing. Let the symbolic time series of price 
fluctuations be x1, x2, x3, …, xN. As a result, the 
recurrence formula for an exponential smoothing 
sequence is 
 

1 1
1 1(1 ) ,t t tS x S      0<α<1, 1≤t≤N          (8) 

1
0 1S x  

 
where 1

tS  represents the value of exponential 
smoothing at point t, and α is the smoothing 
coefficient. The initial value of the recurrence 
formula 1

0S  is the first item of the common time 
series (applicable to a large collection of historical 
data points such as 50 or more). If the size of the 
historical dataset is small, including 15 or 20 data 
points or less, the average of historical data for the 
first few weeks can be used as the initial value 1

0S . 
These approaches are somewhat empirical and 
subjective. 

We next discuss the smoothing factor α and 
expand the recursive formula to 
 

1 1
1(1 ) (1 )[t t t t tS x S x x             

1 2 1
2 1 2(1 ) ] (1 ) (1 )t t t tS x x S              

2
1 2(1 ) (1 )t t tx x x            

1 1
2 0(1 ) (1 )t t

tx S  
                 (9) 

 
As 0≤α≤1, coefficient α(1−α)i of xi   

decreases as i increases. Note that the sum of these 

coefficients is 1, where 
1

(1 ) (1 )
t

i t

i

  


     

1 (1 )

1 (1 )

t


 


 
(1 ) 1t  . Thus, 1

tS  in the recursive 

formula is a weighted average of the sample values 
x1, x2, x3, …, xt. When we use the recursive formula 
to predict price fluctuations, 1

tS  is used as the 
predicted value of point t+1. The above discussion 
shows that weight of xt of time point t most closely 
reflecting predicted time point t+1 is α, which is the 
largest, and for xt−1, the weight is α(1−α), x1 is the 
smallest. We find that the formula produces a 
weighted average for the original time series when 
recent data are considered to have strong impact on 
the future while long-term data are considered to 
have a limited effect. When the smoothing 
coefficient α=0, 1 1 1

1 0 1( ),t tS S S x    the 
smoothing value of each time point is equal to 1

0S  
after determining 1

0 1( )S x . At this point, the 
observed value xi of each time point i has no effect. 
When the smoothing coefficient α=1, 1

t tS x , the 
smoothed sequence 1

tS  is the original time series, 
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and no processing or smoothing is performed on the 
original time series. For the smoothing coefficient  
α, the coefficients of xi and xj (i≠j) cannot be equal 
except under the above two extreme conditions. 

In summary, when 0<α<1 and is close to 1, the 
calculated smoothness value of an exponent of price 
fluctuations is less uniform with the original 
historical data, and 1

tS  of the smoothed sequence 
can reflect the actual change to the original time 
series relatively quickly. Therefore, for a time series 
of price fluctuations with considerable changes or 
strong trends, it is suitable to select data with 
smoothing coefficients of close to 1 such as α=0.95, 
0.90. When 0<α<1 and the value is close to 0, the 
calculated smoothing value will be more uniform 
with the original historical data, and the smoothed 
sequence will not be sensitive to the original time 
series. Therefore, for time series showing few or no 
changes in price fluctuations, we should use a 
smoothing coefficient close to 0 to render the 
weights of the data relatively similar during the 
smoothing process. 
 
2.4 Measuring accuracy of symbolization 

predictions of price fluctuations 
When predicting a high-frequency histogram 

sequence 
1

{ }xh  of metal futures price fluctuations 
whose result is denoted as 

1

ˆ{ }xh , then the 
prediction error is 

1 1

ˆ( ),x xh h  but 
1 1

ˆ( )x xh h  
cannot discern the quantitative difference between 

1x
h  and 

1

ˆ
xh  or how larger the error value is. At 

this point, it is necessary to introduce the MDE 
(mean distance error) to quantify the error, which is 
usually written as 
 

1 1 1 1
1

ˆ ˆ({ , }) ( , ) / 
T

q q
x x x x x

t

MDE h h D h h T


           (10) 

 
where 

1 1

ˆ( , ) x xD h h  can be different formulas of 
distance and T is the number of cycles predicted. 
The selection of the error formula often has a great 
influence on the accuracy of calculation results. We 
compare two relatively mature error formulas. 

(1) Mean absolute error 
 

MAE simu, trag,
1

| |
N

k k
k

p p
N

                  (11) 

 
(2) Mean square error 

 

2
MAE simu, trag,

1

1
( )

N

k k
k

p p
N




               (12) 

 
3 Empirical analysis of symbolic time 

series of price fluctuations predictions 
 
3.1 Preprocessing of price fluctuation data 

We collect five-time-sharing transaction data 
for copper futures from July 2014 to September 
2018. Since the delivery month is close to the spot 
delivery date, the future price is greatly affected by 
the spot price. In our empirical analysis, we use the 
daily settlement price of futures contracts created 
three months away from the delivery month to form 
a continuous price sequence. The futures contracts 
have the largest trading volumes and numbers of 
market participants and exhibit the most active 
levels of trading, which is enough to reflect the 
group will of market participants, and the artificial 
manipulation of the price can be prevented by the 
settlement price. To predict the one-week 
distribution of copper futures price fluctuations, the 
data are grouped from Monday-Friday where each 
week is grouped and data on less than 1000 weeks 
are excluded. We obtain 194 sets of transaction data, 
each of which forms a weekly sequence, and there 
are 284 data points in weekly sequence. The income 
at t of the ith week is defined as Rti=lg Pt,i−   
lg Pt−1,i where i=1, 2, … , 194, and price 
fluctuations are defined as the square of the income 
or as 2

ti tiv R . 
 
3.2 Obtaining symbol histogram time series of 

price fluctuation predictions 
First, symbolize the copper futures price 

fluctuation sequence of each cycle {υti, t=1, 2, …, 
284}(i=1, 2, … , 194) via equal probability  
division. We adopt 3 symbols and the following 
division rules: 
 

1/3

1/3 2/3

2/3

0,

1,

2,

 

 

 

ti i

ti i ti i

ti i

S

 
  
 


  
 

                  (13) 

 
where υ1/3i and υ2/3i respectively represent the 
one-third and two-thirds quantiles of {υti}. Thus, 0, 
1 and 2 correspond to low, moderate and high 
intervals, respectively, and the copper futures price 
fluctuation sequence of each cycle is written as:  
{Sti, t=1, 2, …, 284}(i=1, 2, …, 194). Then, we 
use the minimum entropy rule of modified Shannon 
entropy to determine the appropriate word length as 
in Eq. (1) to apply a word length and to render the 
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improved Shannon entropy value the lowest under 
the determined number of symbols, where L is an 
integer among [2,6]. As our goal is to improve the 
Shannon entropy of the weekly symbolic sequence 
of copper futures price fluctuations, when 
comparing the entropy values of different word 
lengths, we can compare mean values of the 
entropy of different word lengths as 
 

194

1

1
( ) ( ),

194 i
i

H L H L


   L∈{2, …, 6}         (14) 

 
We find that when the word length L increases, 

H(L) decreases continuously, but the rate of 
decrease slows. From the limit on the number of 
samples of copper futures price series for each cycle, 
the word length should be equal to the number 
obtained. We calculate the frequency corresponding 
to different words when L is equal to the number 
obtained from the symbolic sequence of copper 
futures price fluctuations of each cycle, {Sti, t=1, 
2, …, 283}(i=1, 2, …, 194). In turn, we obtain a 
symbolic sequence histogram of copper futures 
price fluctuations for each cycle, all of which form 
a symbolic histogram time series written as {hxt,  
t=1, 2, …, 194}. The results calculated with the 
above method are shown in Table 1. 
 
Table 1 Average entropy of symbolic time series of 

copper futures returns 

Word length, L Average entropy, H(L) 

2 0.992 

3 0.9812 

4 0.9667 

5 0.9725 

6 0.9859 

 
After symbolizing the weekly copper futures 

price return, we obtain a symbolized series of 
weekly copper futures price returns from 194 weeks 
of data. According to the description given above, 
word lengths vary from Refs. [2,6], and we then 
calculate the weekly Shannon entropy of different 
word lengths L and average the entropy values of 
all weeks to obtain an average Shannon entropy 
value. Table 1 shows that the entropy value 
decreases from 2 and then reaches a minimum value 
of 0.9667 at L=4, after which the S entropy value 
begins to increase again. Thus, L=4 is the best word 
length. 

3.3 Selecting the best dimension from G-P 
algorithm 
We use the G-P algorithm to determine the 

embedding dimension, and the best dimension is 
obtained under the assumed condition of τ=1. 
Figure 1 presents a double logarithmic curve of 
ln C(r) and ln r of the symbolic sequence of copper 
futures returns, and Fig. 2 presents a graph of the 
correlation dimension. It can be observed from  
Fig. 2 that the slope of the double logarithmic 
curves of ln C(r) and ln r tends to a saturated value 
when Dm=3.2, at which the geometric attractor of 
the system reaches a state of the maximum 
saturation. The best embedding dimension is then 
calculated based on the best embedding dimension 
as m≥2Dm+1. 

 

 
Fig. 1 Double logarithmic curve of ln C(r) and ln r of 

copper futures symbol sequence (C(r) is the probability 

that the distance between two points on the attractor in 

phase space is less than r) 

 

 

Fig. 2 Correlation dimension of return symbols time 

series (Dm is the limit of the slope of the logarithmic 

curve as r approaches 0) 
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It can be observed from Fig. 1 and Fig. 2 that 
when m is low, the slope of the straight-line 
segment of the double logarithmic curve (i.e., the 
correlation dimension) increases as m increases. 
When m=9−20, the slope of the curve nearly 
plateaus at close to 3.26, and the correlation 
dimension is saturated for the first time. Therefore, 
according to the saturation correlation dimension 
approach, the minimum embedding dimension 
corresponding to the correlation dimension of 3.26 
is int(2D+1)=8. 
 
3.4 Prediction and accuracy of copper futures 

price fluctuation measurements 
After processing copper futures price data 

according to the method shown above, we obtained 
a 194-week symbolic time series xt(t=1, 2, …, 194). 
Then the symbolic time series for 194 weeks are 
divided into two intervals: 184

1TX ={x1, x2, …, x184} 
for prediction and 10

2TX ={x185, x186, …, x194} for 
testing. The mean absolute error (MAE) of Eq. (12) 
and the mean square error (MSE) of Eq. (13) are 
taken as the standard for error calculations in 
predicting copper futures price fluctuations. While 
making predictions, similarities observed between 
copper futures price fluctuation histograms are 
measured from the Euclidean distance. To examine 
the different prediction results of methods, the 
K-NN and exponential smoothing algorithms are 
used to process the experimental data on copper 
futures price fluctuations, and the 10-week 
prediction results for copper futures price 
fluctuations are written as 10

kZ ={z1, z2, …, z10} and 
10
eY ={y1, y2, …, y10} 

(1) K-NN algorithm predictions 
A comparison of predictions using the K-NN 

algorithm based on high-frequency data on copper 
futures price fluctuations and actual detection 
values is shown in Figs. 3 and 4, where each 
histogram corresponds to the one-week symbolic 
time sequence of the copper futures return (returns 
vary within high, medium and low ranges). Figure 3 
reflects the actual value and Fig. 4 reflects the 
predicted value. 

Figure 4 shows that histogram trends of 
predicted copper futures returns are more gradual 
than those derived from actual observations, but the 
general trends are basically the same. This indicates 
that the prediction results are good overall. 
However, the probability distribution of fluctuations 

represented by each word in the copper futures 
return prediction histogram is more gradual than the 
real distribution (Fig. 4). This gradual nature may 
occur because the predicted histogram reflects a 
weighted average of k histograms. 
 

 
Fig. 3 Histogram of actual observations 

 

 
Fig. 4 Histogram of K-NN algorithm predictions 

 
According to Table 2, no matter which metric 

is used, the MSE is always an order of magnitude 
smaller than the MAE. Thus, the prediction error of 
the copper futures return is within an acceptable 
range, showing that the K-NN prediction algorithm 
presented in this paper is suitable for the return data 
on copper futures and for analyzing return 
fluctuations of basic metal futures. 

(2) Exponential smoothing predictions 
In this section, we use the two interval datasets 

 
Table 2 Prediction errors of K-NN algorithm 

Metric (N=10, m=8, K=18) Error 

MAE 0.4233 

MSE 0.0186 
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of the symbolic sequence of the copper futures 
return processed above 184

1TX ={x1, x2, … , x184}, 
and we use 10

1TX ={x185, x186, …, x194} to predict the 
10-week symbolic sequence of copper futures 
returns. Figure 6 shows a histogram of weekly 
predictions. α is a very important parameter when 
using the exponential smoothing method, and its 
most suitable value is α=0.0355 as obtained with 
general statistical tools, at which the error value is 
the smallest. It can be observed from Fig. 6 that the 
main trends are consistent but are not as optimized 
as the results of K-NN prediction algorithm, 
indicating that the method still presents 
shortcomings in generating symbolic time series of 
copper futures returns. 
 

 
Fig. 5 Histogram of week actual observations 

 

 
Fig. 6 Histogram of exponential smoothing predictions 

 
Table 3 presents the prediction error of the 

exponential smoothing method, which is 
significantly larger than that of the K-NN algorithm 
shown in Table 2. Therefore, the exponential 
smoothing prediction algorithm is not as effective 
as the K-NN algorithm, and the latter is more suited 
to addressing symbolic time sequences of copper 
futures returns. 

Table 3 Prediction error of exponential smoothing 

algorithm 

Metric (N=10) Error 

MAE 0.4240 

MSE 0.196 

 
4 Conclusions 
 

(1) The overall error value of predictions of 
copper futures price fluctuations falls within an 
acceptable range, and thus the symbolic time series 
can effectively fit high-frequency fluctuations in 
copper futures prices. 

(2) The trend of the histogram derived from 
the copper futures earnings prediction is gentler 
than the actual histogram, the overall situation of 
the prediction results is better, and the model has 
higher accuracy. 

(3) The results predicted by the K-NN 
algorithm are more accurate than those predicted by 
the exponential smoothing method. The results 
show that the overall error value of predictions of 
copper futures price fluctuations falls within an 
acceptable range, and thus the symbolic time series 
can effectively fit high-frequency fluctuations in 
copper futures prices. 
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高频尺度下基于符号时间序列的 

金属期货价格波动预测及实证 
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摘  要：构建高频尺度下的基于符号时间序列的金属期货价格波动预测模型，并选取上海铜期货交易所 2014 年 7

月到 2018 年 9 月的高频数据，采用符号时间序列方法将样本分为 194 个直方图时间序列，分别使用 K-NN 算法

与指数平滑法预测下一个周期。结果显示，铜期货的收益预测得出的直方图走势比实际的直方图走势较为平缓，

预测结果的整体情况较好，并且预测铜期货所得一周收益的整体波动与实际波动值在很大程度上一致。这表明用

K-NN 算法预测所得的结果比指数平滑法预测的结果更加精确。根据预测得到的铜期货一周的价格整体波动情况，

中国铜期货市场的监管者及投资者可以及时调整其监管政策和投资策略以控制风险。 

关键词：高频；铜；金属期货；符号时间序列；价格波动；预测 
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