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Bingham fluid and H-B fluid: (a) Flow curves and

Diagram of flow curves and related concepts of

corresponding parameters; (b) Flow curves and phase regions;

(c) Apparent viscosity curve
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Table 1 Measurement procedures and experimental parameters

for CSR model

Starting Maximum

Measurement Measuring Gradient/
rocedure speed/ speed/ time/s (rmin ''s")
P (rmin”")  (rmin’")
Pro.1 0.01 1000 1000 1.00
Pro.2 0.01 1000 800 1.25
Pro.3 0.01 1000 500 2.00

2) CSS #ix: il ¥ iR 7 H 0 1B
B, OSRILE N T 6 MOR AR IS A, b
A T 1B 3G 0E A3 M 26 520 . 68%. 70%- 72%
ERWER, L FERHAE T 70918 4.7 A1 11 mN-m,
MEREF SRS HINE 2 Fin. £2LL70%. ER
U Thn=7 mN-m K EFETF R .

k2 CSS BRSPS LS5
Table 2 Measurement procedures and experimental parameters

for CSS model

Starting Maximum

Measurement torque/ torque/ Me-asuring Gradienf/1
procedure (mN'm)  (mN-m) time/s (mN-m-s )
Pro.1 0 7 700 0.010
Pro.2 0 7 467 0.015
Pro.3 0 7 350 0.020
Pro.4 0 7 280 0.025
Pro.5 0 7 234 0.030
Pro.6 0 7 200 0.035
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Fig. 4 Diagram of flow curves of 70% backfill paste for CSR

and CSS modes: (a) CSR mode; (b) CSS mode;
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paste; (c) Diagram of critical torque and solid yield torque
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Rheological behavior of solid-liquid conversion stage of
unclassified tailings backfill paste

LI Cui-ping"?, YAN Bing-heng' %, HOU He-zi"?, LI Rong"?, LI Xue" >

(1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2. State Key Laboratory of High-Efficient Mining and Safety of Metal Mines,
Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China)

Abstract: Backfill paste of unclassified tailings has the characteristics of multi-scale and high-concentration, so whether
typical viscoplastic rheological model was suitable for rheological behavior of paste was an important issue that needed
to be studied. In this paper, the adaptability of typical H-B fluid to the paste was studied. Firstly, adaptive constraint
conditions of H-B fluid were established, and rheological measurement system with data conversion method for paste
were selected. Two rheological measurement modes, control shear rate (CSR) and control shear stress (CSS), were
adopted to carry out the experiment. The results indicate that the flow curves of paste show negative slope for CSR mode
and shear banding for CSS mode. The typical H-B fluid is not suitable for rheological model of unclassified tailings paste
in special stages, and there is a solid-liquid conversion stage in which the solid and liquid phase are coexisted. The range
is controlled by critical shear rate y,, which is proportional to mass concentration of the paste. According to the
characteristics of solid-liquid conversion stage of paste, it is proposed that the engineering rheological problems should
be treated differently according to critical shear rate y,, and the reasonable form of rheological model for paste should
be considered in different shear rate ranges of backfill rheological problem.

Key words: unclassified tailings backfill paste; solid-liquid conversion stage; negative slope curve; shear banding;

rheological behavior
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