2020 年 5 月 May 2020

DOI: 10.11817/j.ysxb.1004.0609.2020-39533

难冶金精矿烟尘中铁砷碳的脱除对 氰化浸金的影响

曹 攀,张霜华,郑雅杰

(中南大学 冶金与环境学院, 长沙 410083)

摘 要: 以难冶金精矿烟尘为原料,研究了氢氧化钠浸出、硫酸浸出以及硫酸与氢氧化钠联合浸出对烟尘中砷、 铁和碳脱除及氰化浸金的影响。结果表明:在氢氧化钠浓度为 6mol/L 时,砷、碳脱除率分别为 99.66%和 60.63%, 金浸出率为 58.90%,较直接氰化浸出仅提高 4.60%,砷的有效去除不能有效提高金的浸出率。在硫酸质量分数为 15%时,铁、砷和碳脱除率分别为 33.65%、80.38%和 12.59%,金的浸出率为 80.40%,与氢氧化钠浸出相比,硫 酸浸出解离铁能有效提高金的浸出率。烟尘分别经过质量分数为 15%硫酸浸出后氰化浸金,两次 2 mol/L 氢氧化 钠浸出和氰化浸金后,烟尘中铁、砷和碳的总脱除率分别为 33.65%、 95.63%和 79.60%,渣率为 80.33%。此时, 金的总浸出率为 91.90%,氰化渣中金的含量为 3.31g/t。与烟尘直接氰化浸出相比金的浸出率提高 37.60%。 关键词:金精矿;焙烧;烟尘;浸出除杂;氰化

文章编号: 1004-0609(2020)-05-1142-11

中图分类号: TF831

文献标志码:A

难处理金矿指经细磨后氰化浸出率小于 80%的 金矿石^[1-2]。这些矿石难冶的程度和原因取决于其固有 的化学组成和物理特性^[1,3-6]。这些矿石氰化浸出前通 常需要经过氧化焙烧、加压氧化、化学氧化和生物氧 化等预处理^[7-13]。

氧化焙烧具有投资适中、效率高和技术成熟等特点,因此被广泛的用于难冶金精矿脱硫、脱砷^[7,14-15]。 难冶金精矿经过焙烧,产生焙砂和烟尘,焙砂通过酸 浸或碱浸预处理后氰化浸金,金的浸出率一般大于 90%^[16-18]。而烟尘颗粒粒度细小,杂质含量高,一般 金的浸出率低于 80%^[19]。

对于硫含量较高的烟尘,通过焙烧烟尘的方法, 充分脱除硫,金的浸出率可提高到了90%以上^[20]。对 于砷和碳含量较高的烟尘,由于砷脱除需要在弱氧化 气氛下进行,然而碳的脱除需要在强氧化条件下进行, 因此通过简单的焙烧不能同时彻底脱除砷和碳,提高 金的浸出率^[21]。同时,烟尘焙烧时由于热值不够需要 补加煤或天然气,因此能耗高。实际工厂采用返回焙 烧炉与金精矿一起焙烧,但是受沸腾炉处理能力以及 工艺的限制,往往不能够完全处理。因此,本研究采 用了硫酸和氢氧化钠联合浸出除杂后,金的氰化浸出 率与烟尘直接氰化浸金相比,金的浸出率从54.30%提 高到 91.90%。研究揭示了杂质对金浸出率的影响,并 得出了适宜难冶金精矿烟尘的湿法处理工艺。

1 实验

1.1 实验原料

实验所用难冶金精矿烟尘来自新疆某金冶炼厂, 经过充分混合后用做实验原料。外观呈红褐色粉末状, 平均粒径为4 µm。主要化学成分如表1所列。

表1 烟尘主要化学成分

Tabla 1	Chamiaal	annanition	of durat	(function	0/)	
Table 1	Chennear	composition	of uusi	(mass	naction,	/0/	

Au ¹⁾	Ag ¹⁾	As	С	S	TFe	Cu	Pb
32.52	56.76	2.64	2.89	1.75	32.17	0.14	0.095
1) g/t							

由表 1 可知,实验所用难冶金精矿烟尘的主要组 分为 Fe,其含量为 32.17%,有价组分 Au、Ag 含量分 别为 32.52 g/t 和 56.76 g/t, As 和 C 元素含量分别为 2.64%和 2.89%。

为进一步明确难冶金精矿烟尘的矿物组成,实验进行了矿物解离度分析(MLA),结果如表 2 所列。由

基金项目:新疆高新技术研究开发项目(201515108);新疆自治区战略性新兴产业项目(201552)

收稿日期: 2019-05-21; 修订日期: 2019-12-19

通信作者:郑雅杰,教授,博士;电话: 0731-88836285; E-mail: zyj@csu.edu.cn

表2 烟尘主要矿物组成

Table 2Major minerals composition in dust (mass fraction, %)

Minerals	Content	Minerals	Content	Minerals	Content
Gold minerals	Trace	Chalcopyrite	0.05	Chlorite	1.05
Silver minerals	Trace	Sphalerite	0.14	Montmorillonite	0.09
Arsenic oxide	5.75	Sardiniane	0.02	Kaolinite	0.03
Scorodite	0.06	Quartz	10.53	Dolomite	0.43
Magnetite	6.51	Feldspar	2.29	Rutile	0.53
Hematite, maghemite	47.24	Mica	14.57	Talc	0.22
Pyrite	0.59	Anhydrite	6.83	Apatite	0.15
Arsenopyrite	0.03	Carbonaceous matter	2.65	Else	0.24

表 2 可知, 难冶金精矿烟尘主要的矿物包括赤铁矿、 磁赤铁矿、磁铁矿、石英、云母、硬石膏、砷氧化物 和碳质物等。

试验药剂:氢氧化钠、硫酸均为分析纯,氰化物为工业纯。

1.2 实验步骤

1.2.1 氢氧化钠浸出

将一定浓度的氢氧化钠溶液加入 1L 三颈瓶中, 启动加热套加热至 90 ℃恒温,在 300 r/min 的搅拌条 件下缓慢加入烟尘或氰化渣,在液固比 3:1 条件下反 应 2 h 后过滤,滤渣进行氰化浸出。

1.2.2 硫酸浸出

将一定浓度的硫酸溶液加入 1L 三颈瓶中,启动 加热套加热至 90 ℃恒温,在 300 r/min 的搅拌条件下 将 200 g 难冶金精矿烟尘缓慢加入,在液固比 4:1 条件 下反应 4h 后过滤,滤渣浆洗 3 遍,过滤,滤渣进行氰 化浸出。

1.2.3 氰化浸出

称取 100 g上述酸浸渣或碱浸渣置于 500 mL 三颈 瓶中,按液固比 4:1,加入质量分数为 0.6%的氰化钠 溶液,滴加氢氧化钠溶液调节矿浆 pH=11,用空气泵 向矿浆中泵入空气,在搅拌强度为 300 r/min 条件下常 温浸出 48 h。

1.3 分析方法

采用矿物解离分析仪(MLA, FEI.Quanta 600, JKtech MLA suite)分析烟尘矿物组成;采用电感耦合 等离子体发射光谱仪(ICP-OES, iCAP 7000 series, Thermo Fisher Scientific)分析溶液元素含量;采用高频 红外碳硫分析仪(HCS-800,凯德仪器公司生产)测定酸 浸及碱浸渣中碳含量;采用扫面电镜(SEM, FEI ESEM, Quanta 200)分析固体形貌;采用火试金法 (GB/T 11066.1—1989)测定烟尘及氰化渣中金的含量用。金的浸出率由式(1)计算。

$$\eta = \frac{c \cdot v}{G \cdot \alpha} \times 100\% \tag{1}$$

式中: *c* 为浸出液中金的浓度, g/L; *V* 为浸出液体积, L; *G* 为烟尘质量, g。

2 结果与讨论

2.1 氢氧化钠浸出对烟尘杂质去除及氰化浸金的影响

研究了氢氧化钠预浸出过程氢氧化钠浓度对烟尘 中砷碳脱除率、碱浸渣率及碱浸渣中金氰化浸出率的 影响,试验结果如图1所示。

由图 1 可知, 当氢氧化钠浓度从 0 升高到 6 mol/L 时, 碱浸渣渣率由 100.00%下降到 88.20%, 砷的脱除

Fig. 1 Effects of NaOH concentrations on removal rate of harmful element in dust, alkali leaching residue rate and gold cyanide leaching efficiency

率由 0 逐渐增加至 99.66%。结果表明氢氧化钠能有效 的脱除烟尘中的砷。当氢氧化钠浓度从 0 增加到 2 mol/L 时,碳的脱除率由 0 升高至 70.23%,继续增加 氢氧化钠浓度,碳的脱除率逐渐下降至 60.63%。当氢 氧化钠浓度从 0 增加到 2 mol/L 时,金的浸出率由 54.30%升高至 58.90%,随着氢氧化钠浓度的继续增 加,金的浸出率基本不变。

烟尘中不同砷的化合物如表 3 所列。

表3 烟尘中不同砷的化合物含量

Table 3	Contents of arsenic-bearing compound in dust
	contente el arcenne cearing compound in auct

Phase	Content/%	Distribution rate/%
As ₂ O ₃	1.05	26.58
As_2O_5	2.81	71.14
FeAsS	0.03	0.76
FeAsO ₄ ·2H ₂ O	0.06	1.52
Total	3.95	100.00

由表 3 可知,烟尘中砷主要以三氧化二砷和五氧 化二砷等氧化物的形式存在,砷的氧化物与氢氧化钠 的反应如式(2)和式(3)^[22]所示:

 $As_2O_3 + 2NaOH = 2NaAsO_2 + H_2O$ (2)

 $As_2O_5 + 6NaOH = 2Na_3AsO_4 + 3H_2O$ (3)

当三氧化二砷溶解反应达到平衡时,其平衡常数 如下:

$$K = c_{\rm NaAsO_2}^2 / c_{\rm NaOH}^2$$
⁽⁴⁾

在标准状态下,反应的标准吉布斯自由能变化为

$$\Delta G_T^{\Theta} = -2.303 RT \lg K \tag{5}$$

根据热力学数据表^[23]可知, ΔG_T^{Θ} =-50.26 kJ/mol,则标准状态下反应的平衡常数为 1×10^{8.81}。标准状态下五氧化二砷与氢氧化钠反应的平衡常数为 1×10^{49.46}。热力学计算表明,三氧化二砷和五氧化二砷与氢氧化钠反应趋势很大。砷的氧化物极易溶于氢氧化钠溶液,且随氢氧化钠浓度的增加,亚砷酸根及砷酸根浓度也会随之增加,从而导致氢氧化钠预浸过程中砷脱除率的增加。所以氢氧化钠浸出能够有效脱除烟尘中的砷,砷最高脱除率达到了 99.66%。

砷对氰化浸金的影响主要体现在如下两个方面: 一方面,砷的氧化物会消耗溶液中的碱,降低溶液 pH 值。然而当 pH 低于 9.3 时,氰化物急剧水解生成挥发 性的氰氢酸气体,氰氢酸与氰根的比例将大于 1。pH 值越低氰根离子所占比例越低,与金反应的氰根离子 的浓度越低,进而影响金的浸出。在缺乏游离碱时, 砷的氧化物还可与氰化物起作用生成氢氰酸气体,消 耗氰化物,影响金的浸出。另一方面,含砷矿物在碱 性矿浆中分解生成亚砷酸盐、砷酸盐等含砷盐,它们 与金粒表面接触时可在金颗粒表面生成相应的薄膜, 阻碍金粒表面与溶解氧和氰根离子的接触,进而阻碍 金的浸出^[21,24]。氢氧化钠预浸出,能有效脱除烟尘中 的砷,从而减少砷对氰化浸出的不利影响,但是氢氧 化钠浸取脱砷后,并不能有效提高金的浸出率。说明 烟尘中砷不是影响金浸出的主要因素。

烟尘中碳的化学物相分析结果如表 4 所列。烟尘 中碳质物偏光显微镜及 SEM 像如图 2 所示。

表4 烟尘中碳的化学物相组成

 Table 4
 Chemical phase composition of carbon in dust

Carbon phase	Content/%	Distribution rate/%
Graphite	0.22	7.61
Organic carbon	0.25	8.65
Carbonate	2.42	83.74
Total	2.89	100.00

图 2 烟尘中碳质物图像

Fig. 2 Images of carbonaceous matter in dust: (a) Polarizing microscope; (b) SEM image

由表 4 可知,烟尘中碳的存在形式为石墨、有机 碳和碳酸盐,其含量分别为 0.22%、0.25%和 2.42%,

占总碳的比例分别为 7.61%、 8.65% 和 83.74%。

由图 2 可知,碳质物呈细小的片状、叶片状或针 线状,具单向延伸形态,反射光下具有较显著双反射, 后一特征说明样品中部分碳质物已发生晶质化而向石 墨转变。碳质物与铁矿物、氧化砷和其他非金属矿物 的嵌连关系并不十分密切,粒度 2~5 μm。

根据烟尘中碳存在的形式可知,以石墨和腐殖酸 类有机物形式存在的碳质物对氰化过程有严重不利影 响。主要表现为上述碳质物在氰化浸金过程中的截金 作用,使以金氰络合物形式溶解的金被吸附到碳质物 上,最后损失在尾矿中,从而降低金的浸出率与回收 率^[4, 18, 25-26]。

烟尘氢氧化钠溶液预浸出过程,部分有机碳质物 及可溶碳酸盐溶解于氢氧化钠溶液导致碳脱除率的增 加^[27],从而减小碳质物对氰化过程的不利影响。但氢 氧化钠浓度过高时,矿浆粘度增加,扩散系数减小, 从而导致碳的脱除率下降。

烟尘 XRD 物相分析结果及其 EDS 面扫描分析结 果分别如图 3 和图 4 所示。

由图 3 可知,烟尘成分复杂,磁铁矿、赤铁矿、 石英、云母及石膏为烟尘中主要矿物。由图 4 可知, 金和铁元素总体分布均匀,但不同区域元素含量差别 较大。金元素与铁元素交织在一起,在焙烧过程中, 金粒表面形成氧化铁覆盖物^[28]。一方面氢氧化钠预浸 过程中,金粒表面覆盖的铁氧化物并不能溶解进入溶 液,从而阻止氰化浸出过程金粒与氰化物的接触。另 一方面与金粒连生在一起的铁氧化物,虽然不会完全 阻止金粒与氰化物的反应,但是会减少其接触面积, 影响金的浸出速率,从而影响金的浸出^[16]。

综上所述,在氢氧化钠预浸出过程中当氢氧化钠 浓度从0增加到2mol/L时,金的浸出率由54.30%升 高至58.90%,金浸出率增加的主要原因为砷、碳脱除 率的增加。然而,当氢氧化钠浓度从2mol/L增加到6 mol/L时,金的浸出率并没有随砷的进一步脱除而逐 渐增加,其主要原因为铁氧化物对金氰化浸出的阻碍 及碳脱除率的下降。

Fig. 3 XRD pattern of dust

2.2 硫酸浸出对烟尘杂质去除及氰化浸金的影响

研究了硫酸浓度对烟尘中砷、铁和碳脱除率及酸 浸渣中金氰化浸出率的影响,结果如图 5 所示。

图4 烟尘的形貌及面扫描图

Fig. 4 Morphologies((a), (d)) and surface scanning maps((b), (c), (e), (f)) of dust

图 5 硫酸浓度对烟尘中砷、铁和碳脱除率及酸浸渣中金氰 化浸出率的影响

Fig. 5 Effects of sulphuric acid concentrations on As, Fe and C removal rate in dust and Au cyanide leaching efficiency in acid leaching residues

由图 5 可知,当硫酸质量分数从 0 增加到 45%时, 铁和碳的脱除率分别从 0 增加到 24.92%和 77.79%。 对砷而言,硫酸质量分数从 0 增加到 25%时,砷的脱 除率从 0 增加到 89.60%;而硫酸质量分数增加到 45% 时,砷的脱除率下降至 84.60%。当硫酸质量分数由 0 增加到 15%时,金的浸出率由 54.30%增加到 80.40%, 随着硫酸质量分数的继续增加,金的浸出率逐渐降低, 硫酸质量分数为 45%时,金的浸出率仅为 73.52%。

烟尘中铁的化学物相分析结果分别如表 5 所列。

表5 烟尘中铁的化学物相分析

Table 5	Chemical	phase	anal	vsis	of i	ron	in	dust
I abre e	Chenneur	price	unun	, 515	011	1011		aabt

	-	
Phase	Content/%	Distribution rate/%
mFe	15.31	47.59
OFe	15.09	46.91
CFe	0.12	0.37
SFe	0.45	1.40
SiFe	1.20	3.73
Total	32.17	100.00

由表 5 可知,烟尘中赤铁矿和磁铁矿所占比例分 别为 47.5%和 46.91%,以碳酸盐、硫化物和硅酸盐形 式存在的铁所占比例仅为 5.50%。三氧化二铁和四氧 化三铁溶于硫酸的反应如反应式(6)和式(7)^[29]式所示:

 $Fe_2O_3 + 3H_2SO_4 = Fe_2(SO_4)_3 + 3H_2O$ (6)

$$Fe_{3}O_{4}+4H_{2}SO_{4} = Fe_{2}(SO_{4})_{3}+FeSO_{4}+4H_{2}O$$
(7)

当三氧化二铁溶解反应达到平衡时,其平衡常数 如下:

$$K_1 = c_{\rm Fe^{3+}}^2 / c_{\rm H^+}^6 \tag{8}$$

在标准状态下,反应的标准吉布斯自由能变化为

$$\Delta G_{\rm r}^{\Theta} = -2.303 RT \lg K \tag{9}$$

根据热力学数据表^[23]可知, $\Delta G_T^{\Theta} = -261.21$ kJ/mol,则标准状态下反应的平衡常数为 $K_1=1 \times 10^{45.76}$ 。同样的方法标准状态下四氧化三铁与硫酸反应的平衡常数 $K_2=1 \times 10^{63.55}$ 。

热力学计算表明,三氧化二铁和四氧化三铁在酸 性溶液中反应趋势很大,随硫酸浓度增加,铁的浸出 率逐渐升高,因此铁的脱除率随硫酸浓度的增加而升 高。通过硫酸浸出,可有效地解离铁氧化物,减少其 对浸金过程的不利影响。

硫酸浸出过程中,五氧化二砷极易溶于硫酸溶液, 然而,三氧化二砷在硫酸溶液中的溶解度随硫酸浓度 的升高而下降^[30-31]。当硫酸质量分数大于 25%后,砷 的浸出率略有下降,是由于过高硫酸浓度导致三氧化 二砷溶解度下降所致。通过酸浸,能够有效脱除烟尘 中部分砷,减少砷对金浸出的有害影响。

烟尘经酸浸后渣中碳含量测试结果如图6所示。

图6 硫酸浓度对酸浸渣中碳含量的影响

由图 6 可知,当硫酸质量分数从 0 增加到 45%时, 酸浸渣率从 100.00%下降到 53.50%,酸浸渣中碳含量 从 2.89%增加到 4.06%。由于酸浸时渣量减少,烟尘 中碳溶出少,导致酸浸渣碳含量的增加。相同质量的 烟尘和酸浸渣在相同氰化条件氰化浸出时,由于酸浸 渣中碳含量高于烟尘中的碳含量,因此,酸浸渣中碳 的总质量高于烟尘中碳的总质量,碳质物在氰化浸金 过程中的截金作用增强,使以金氰络合物形式溶解的 金更多的被吸附到碳质物上,最后损失在尾矿中,从 而金的浸出率降低。

综上所述,当硫酸质量分数由0增加到15%时, 硫酸浸出能有效溶解烟尘渣中的铁氧化物和砷,从而 使金的浸出率达到了80.40%,与氢氧化钠浸出相比, 硫酸浸出解离铁能有效提高金的浸出率。

2.3 硫酸和氢氧化钠联合浸出对烟尘氰化浸金的影响

2.3.1 硫酸浸出后氢氧化钠浸出对杂质去除及金浸出 的影响

研究表明硫酸和氢氧化钠浸出能够有效消除烟尘 中阻碍金浸出的因素,但是单独处理时,金浸出率低 于 90%。因此,研究了烟尘硫酸和氢氧化钠联合浸出 对氰化浸金的影响。

以15%硫酸浸出渣为原料,研究了氢氧化钠浓度 对酸浸渣中砷、碳脱除率以及碱浸渣渣率和金氰化浸 出率的影响,试验结果分别如图7和8所示。

由图 7 可知, 当氢氧化钠浓度由 0 升高到 6 mol/L 时, 碱浸渣渣率由 100.00%下降到 95.50%。当氢氧化 钠浓度由 0 升高到 2 mol/L 时, 砷的脱除率由 0 升高 到 10.82%, 碳的脱除率由 0 升高到 61.38%, 砷脱除 率的升高是由硫酸浸出过程中未溶解完全的砷氧化物 与氢氧化钠反应进入溶液所致, 碳脱除率的增加是由 于有机碳质物及可溶碳酸盐溶解于氢氧化钠溶液。继 续增加氢氧化钠浓度, 砷和碳的脱除率无明显变化。

由图 8 可知,当氢氧化钠浓度由 0 升高到 6 mol/L 时,碱浸渣渣率由 100.00%下降到 95.50%,金的浸出 率由 80.40%逐渐下降至 63.49%。

100 100 Au cyanide leaching efficiency/% 90 90 Residue rate/% 80 80 70 70 60 50 60 0 2 3 4 5 6 NaOH concentration/(mol· L^{-1})

图 8 氢氧化钠浓度对碱浸渣渣率及金浸出率的影响

Fig. 8 Effect of NaOH concentrations on alkali leaching residue rate and Au cyanide leaching efficiency

不同氢氧化钠浓度浸出条件下得到的碱浸渣 SEM 分析实验结果如图 9 所示。

由图 9(a)可知,颗粒呈疏松多孔结构。图 9(b)~(d) 所示为酸浸渣经过氢氧化钠处理后渣,颗粒部分孔道 被堵塞,孔隙率降低,且随着氢氧化钠浓度的增加, 颗粒孔隙率降低,当氢氧化钠浓度为 6 mol/L 时,颗 粒出现了板结现象。

当氢氧化钠浓度由 0 升高到 6 mol/L 时,金的浸 出率不随砷、碳去除率增加而增加,反而逐渐下降。 从氢氧化钠浸出渣分析,随着碱浸过程氢氧化钠浓度 的升高,颗粒孔隙率降低,且细小颗粒团聚现象加剧, 阻碍了金矿物颗粒与氰化物溶液的接触,从而导致金 浸出率随氢氧化钠浓度的增大而下降。

2.3.2 硫酸浸出氰化后氢氧化钠对杂质去除及金浸出的影响

由上述分析可知,烟尘经 15%硫酸酸浸预处理后 氰化浸出,金的浸出率为 80.40%,然而 15%硫酸酸浸 渣经氢氧化钠碱浸预处理后,金的浸出率反而下降, 可能的原因是酸浸后部分已解离和裸露金,在碱浸预 处理过程又重新被其他矿物包裹或罩盖,从而不能与 氰化物接触,导致金的浸出率下降。因此研究了氢氧 化钠浓度对酸浸后浸金渣中杂质去除及氰化浸金的影 响。

本部分氰化浸出时间均为24h,其他条件与小节 1.3 中氰化实验条件相同。15%硫酸浸出渣氰化24h 时,金的浸出率为62.00%,得到一次浸金渣中金含量 为15g/t。氢氧化钠浓度对一次浸金渣中砷、碳脱除 率及碱浸渣中金氰化浸出的影响如图10所示。

由图10可知,当氢氧化钠浓度由0升高到6mol/L

图 9 不同氢氧化钠浓度浸出条件下得到的碱浸渣 SME 像

Fig. 9 SME images of alkali leaching residues obtained under different NaOH concentrations: (a) 0 mol/L; (b)2 mol/L; (c) 3 mol/L; (d) 6 mol/L

图 10 氢氧化钠浓度对一次浸金渣中砷碳脱除率、渣率及 碱浸渣中金氰化浸出率的影响

Fig. 10 Effect of NaOH concentrations on As and C removal rate in first cyanide leaching residue, residue rate and Au cyanide leaching efficiency in alkali leaching residues

时, 渣率由 100.00%下降到 98.00%。当氢氧化钠浓度 由 0 升高到 2 mol/L 时, 砷、碳脱除率分别由 0 升高 到 47.45%和 70.50%, 金的浸出率由 50.96%升高到 64.62%, 此时金的浸出率占烟尘中金金属量的 24.55%;继续增加氢氧化钠浓度砷、碳脱除率和金的 浸出率反而下降;当氢氧化钠浓度为6 mol/L 时,砷、 碳脱除率和金的浸出率分别为 36.42%、60.74%和 52.78%,金浸出率的变化趋势基本与砷碳脱除率的变 化规律一致。

由此可知,在酸浸解离铁后,氢氧化钠浸出能够 继续去除浸金渣中砷和碳,从而金浸出率提高。在杂质 脱除后,进行氰化有利于氰化物溶解金活性的提高^[32]。

不同氢氧化钠浓度条件下碱浸渣的 SEM 像如图 11 所示。由图 11 可知,酸浸氰化后,再氢氧化钠浸 出,颗粒孔隙度减少,特别是当氢氧化钠浓度为 6 mol/L 时,颗粒板结现象严重。当氢氧化钠浓度大于 2 mol/L 后,金浸出率下降的原因,一是砷碳脱除率的 降低;另一方面可能是随氢氧化钠浓度的增加,渣中 颗粒表面板结现象加重,从而导致孔隙率下降,从而 影响金矿物颗粒与氰化物溶液的接触,因此金浸出率 下降。

烟尘经 15%硫酸浸出后一次氰化,一次浸金渣经 2 mol/L 氢氧化钠浸出后氰化,金的总浸出率为 86.55%,砷的总脱除率为 91.38%,碳的总脱除率为

74.10%,二次浸金渣中金含量为5.31g/t。为了进一步降低浸金渣中金的含量,采用2 mol/L 的氢氧化钠溶液浸出二次浸金渣后氰化,实验结果如表6所列。

由表 6 可知,第二次碱浸过程砷的脱除率为 40.01%,碳脱除率为17.23%,碱浸液中金含量为0。 第三次氰化浸出过程金浸出率为37.67%,占烟尘中金 金属量的5.35%。通过三次氰化浸出金的总浸出率为 91.90%,最终氰化尾渣中金的含量为3.31g/t。对于碱 浸后二次浸金渣再次碱浸,由于渣中碳和砷含量降低, 因此经过第三次氰化,金的浸出率可以提高5.35%。 可以说明在解离铁后和去除砷碳后,氰化可有效进行。

鉴于酸浸和碱浸能有效去除氰化浸金的不利因素 以及氰化尾渣金含量为 3.31 g/t,烟尘浸金工艺如图 12 所示。

图 11 不同氢氧化钠浓度浸出条件下得到的碱浸渣 SME 像

Fig. 11 SME images of alkali leaching residues obtained under different NaOH concentrations: (a) 0 mol/L; (b) 1 mol/L; (c) 2 mol/L; (d) 6 mol/L

表6 二次浸金渣氢氧化钠浸出实验结果

 Table 6
 Result of NaOH leaching of second cyanide residue

Experiment	As removal rate/%	C removal rate/%	Residue rate/%	Au leaching efficiency/%
Second alkali leaching	40.01	17.23	99.00	0
Third cyanide leaching	0.0001	-	_	37.67

图 12 烟尘硫酸解离和氢氧化钠除杂氰化浸金工艺流程

Fig. 12 Cyanide leaching process flowsheet of dust through H₂SO₄ leaching dissociation and NaOH leaching edulcoration

3 结论

1) 烟尘中主要组分为 Fe, 其含量为 32.17%, 有 价组分 Au、Ag 含量分别为 32.52 g/t 和 56.76 g/t, As 和 C 元素含量分别为 2.64%和 2.89%。主要的矿物包 括赤铁矿、磁赤铁矿、磁铁矿、石英、云母、硬石膏、 氧化砷矿物和碳质物等。

2) 在本试验研究范围内,当氢氧化钠浓度从 0 增加到 6 mol/L 时,砷脱除率从 0 升高至 99.66%,碳脱 除率从 0 增加至 70.23%后降低至 60.63%,金浸出率 由 54.30%增加到 58.90%。砷的有效去除不能有效提 高金的浸出率。当硫酸浓度由 0 增加到 15%时,铁、 砷和碳脱除率分别从 0 增加到 33.65%、80.38%和 12.59%,金的浸出率由 54.3%增加到 80.40%,与氢氧 化钠预浸出相比,硫酸浸出解离铁能有效提高金的浸 出率。

3) 研究表明, 难冶金精矿烟尘分别经过浓度为当 硫酸浓度为 15%硫酸浸出后氰化浸金, 两次 2 mol/L 氢氧化钠浸出和氰化浸金后, 烟尘中铁、砷和碳的总 脱除率分别为 33.65%、 95.63%和 79.60%, 渣率为 80.33%。此时金的总浸出率为 91.90%, 氰化渣中金的 含量为 3.31 g/t。与烟尘直接氰化浸出相比金的浸出率 提高 37.60%。

REFERENCES

- GONZÁLEZ-ANAYA J A, NAVA-ALONSO F, PECINA-TREVIÑO E T. Gold recovery optimization of a refractory concentrate by ultrafine grinding—A laboratory study [J]. Minerals & Metallurgical Processing, 2011, 28(2): 94–101.
- [2] GUDYANGA F P, MAHLANGU T, ROMAN R J, MUNGOSHI J, MBEVE K. An acidic pressure oxidation pre-treatment of refractory gold concentrates from the Kwekwe roasting plant, Zimbabwe[J]. Minerals Engineering, 1999, 12(8): 863–875.
- [3] DYER L G, SAUBER M, DIXON D G, ASSELIN E. On the refractory nature of precious metal tellurides[J]. Hydrometallurgy, 2017, 169: 488–495.
- [4] MUBAROK M Z, WINARKO R, CHAERUN S K, RIZKI I N, ICHLAS Z T. Improving gold recovery from refractory gold ores through biooxidation using iron-sulfur-oxidizing/ sulfur-oxidizing mixotrophic bacteria[J]. Hydrometallurgy,

2017, 168: 69-75.

- [5] AMANKWAH R K, PICKLES C A. Microwave roasting of a carbonaceous sulphidic gold concentrate[J]. Minerals Engineering, 2009, 22(13): 1095–1101.
- [6] SEITKAN A, REDFERN S A T. Processing double refractory gold-arsenic-bearing concentrates by direct reductive melting[J]. Minerals Engineering, 2016, 98: 286–302.
- WANG G H, XIE J P, LI S P, GUO Y J, PAN Y, WU H, LIU X X. Two-step oxidation of refractory gold concentrates with different microbial communities[J]. Journal of Microbiology & Biotechnology, 2016, 26(11): 1871–1880.
- [8] LI J, DABROWSKI B, MILLER J D, ACAR S, DIETRICH M, LEVIER K M, WAN R Y. The influence of pyrite pre-oxidation on gold recovery by cyanidation[J]. Minerals Engineering, 2006, 19(9): 883–895.
- [9] MCDONALD R G, MUIR D M. Pressure oxidation leaching of chalcopyrite. Part I. Comparison of high and low temperature reaction kinetics and products[J]. Hydrometallurgy, 2007, 86(3): 191–205.
- [10] XU B, YANG Y B, JIANG T, LI Q, ZHANG X, WANG D. Improved thiosulfate leaching of a refractory gold concentrate calcine with additives[J]. Hydrometallurgy, 2015, 152: 214–222.
- [11] HASHEMZADEHFINI M, FICERIOVÁ J, ABKHOSHK E, SHAHRAKI B K. Effect of mechanical activation on thiosulfate leaching of gold from complex sulfide concentrate[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(12): 2744–2751.
- [12] TANAKA M, YAMAJI Y, FUKANO Y, SHIMADA K, ISHIBASHI J I, HIRAJIMA T, SASAKI K, SAWADA M, OKIBE N. Biooxidation of gold, silver, and antimonybearing highly refractory polymetallic sulfide concentrates, and its comparison with abiotic pretreatment techniques[J]. Geomicrobiology Journal, 2014, 32(6): 538–548.
- [13] YU R L, WU F D, CHEN A, SHI L J, ZENG W M, GU G H, QIN W Q, QIU G Z. Effect of mixed moderately thermophilic adaptation on leachability and mechanism of high arsenic gold concentrate in an airlift bioreactor[J]. Journal of Central South University, 2015, 22(1): 66–73.
- [14] de MICHELIS I, OLIVIERI A, UBALDINI S, FERELLA F, BEOLCHINI F, VEGLIÒ F. Roasting and chlorine leaching of gold-bearing refractory concentrate: Experimental and process analysis[J]. International Journal of Mining Science and Technology, 2013, 23(5): 709–715.

- [15] HAMMERSCHMIDT J, GÜNTNER J, KERSTIENS B, CHARITOS A. Roasting of gold ore in the circulating fluidized-bed technology[J]. Developments in Mineral Processing, 2005, 15(9): 433–453.
- [16] ZHANG S H, ZHENG Y J, CAO P, LI C H, LAI S Z, WANG X J. Process mineralogy characteristics of acid leaching residue produced in low-temperature roasting-acid leaching pretreatment process of refractory gold concentrates[J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(10): 1132–1139.
- [17] DANG X E, KE W S, TANG C, LÜ J, LIU C P. Increasing leaching rate of gold cyanide of two-stage calcination generated from refractory ore containing arsenopyrite and pyrrhotite[J]. Rare Metals, 2016, 35(10): 804–810.
- [18] LI Q, JI F Z, XU B, HU J J, YANG Y B, JIANG T. Consolidation mechanism of gold concentrates containing sulfur and carbon during oxygen-enriched air roasting[J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(4): 386–392.
- [19] THOMAS K G, COLE A P. Roasting developmentsespecially oxygenated roasting[J]. Developments in Mineral Processing, 2005, 15: 403–432.
- [20] 张跃红,李 云,刘洪晓,栾东武,黄海辉,王 云.难处 理金精矿两段焙烧流程的技术改造[J].有色金属:冶炼部 分,2015,11:36-38.

ZHANG Yue-hong, LI Yun, LIU Hong-xiao, LUAN Dong-wu, HUANG Hai-hui, WANG Yun. Technical transformation of two-stage roasting for refractory gold concentrates[J]. Nonferrous Metals: Extractive Metallurgy, 2015, 11: 36–38.

- [21] 黄礼煌. 金银提取技术[M]. 北京: 冶金出版社, 2005: 133-299.
 HUNGLi-huang. Extraction technology of gold and silver[M]. Beijing: Metallurgical Industry Press, 2005: 133-299.
- [22] 水志良,陈启超,水浩东. 砷化学与工艺学[M]. 北京: 化 学工业出版社, 2014: 20-22.
 SHUI Zhi-liang, CHEN Qi-chao, SHUI Hao-Dong. Arsenic chemistry and technology[M]. Beijing: Chemical Industry Press, 2014: 20-22.
- [23] DEAN J A. 兰氏化学手册[M]. 北京: 科学出版社, 1991: 6.92-6.93.

DEAN J A. Handbooks of lan-shi chemistry [M]. Beijing:

Science Press, 1991: 6.92-6.93.

[24] 卢宜源, 宾万达. 贵金属冶金学[M]. 长沙: 中南大学出版 社, 2004: 74-82.

LU Yi-yuan, BIN Wan-da. Metallurgy of precious metals [M]. Changsha: Central South University Press, 2004: 74-82.

- [25] PYKE B L, JOHNSTON R F, BROOKS, P. The characterisation and behaviour of carbonaceous material in a refractory gold bearing ore[J]. Minerals Engineering, 1999, 12(8): 851–862.
- [26] OFORI-SARPONG G, OSSEO-ASARE K. Preg-robbing of gold from cyanide and non-cyanide complexes: Effect of fungi pretreatment of carbonaceous matter[J]. International Journal of Mineral Processing, 2013, 119: 27–33.
- [27] 张晓璐. 酸、碱污染土的试验研究[D]. 南京: 河海大学, 2007: 58-60.
 ZHANG Xiao-lu. Experimental research on soil contaminated by acid and alkali[D]. Nanjing: Hohai University, 2007: 58-60.
- [28] 王 勇. 含金砷硫精矿回收金的工艺研究[D]. 长沙: 中南大学, 2012: 5-6.
 WANG Yong. Process study on recovery gold from surful concentrate containing gold and arsenic[D]. Changsha: Central South University, 2012: 5-6.
- [29] 郑雅杰. 硫铁矿烧渣制备聚合硫酸铁和聚磷硫酸铁新工 艺及基础理论研究[D]. 长沙: 中南大学, 2002: 13-14. ZHENG Ya-jie. Study on new technology and fundumental theory of polyferric sulfate and phosphorous polyferric sulfate prepared from pyrite cinders[D]. Changsha: Central South University, 2002: 13-14.
- [30] 黄 虹, 王钧阳. 从高砷金矿浸出液中提取砷的研究[J].
 金属材料与冶金工程, 1997, 4: 12-13.
 HUANG Hong, WANG Jun-yang. Extraction of arsenic from leaching solution of high arsenic gold ore[J]. Metal Materials and Metallurgical Engineering, 1997, 4: 12-13.
- [31] 王钧扬,黄 虹. 在硫酸介质中处理含砷物料[J]. 中国资源综合利用, 1999, 3: 15-16.
 WANG Hong, WANG Jun-yang. Treatment of arsenic containing materials in sulfuric acid medium[J]. China Resources Comprehensive Utilization, 1999, 3: 15-16.
- [32] 徐天允. 采用阶段浸洗提高黄金氰化总回收率[J]. 中国矿 山工程, 1982, 6: 17-22.

XU Tian-yun. Improving total recovery rate of gold by stage cyanide[J]. China Mining Engineering, 1982, 6: 17–22.

Effects of iron, arsenic and carbon removal from a dust of refractory gold concentrates on cyanide leaching

CAO Pan, ZHANG Shuang-hua, ZHENG Ya-jie

(School of Metallurgy and Environment, Central South University, Changsha 410083, China)

Abstract: A dust of refractory Au concentrates was used as raw material. The effects of sodium hydroxide leaching, sulfuric acid leaching and sulfuric acid-sodium hydroxide combined leaching on the As, Fe, and C removal and cyanide leaching were studied. The results show that As and C removal rate, at 6 mol/L NaOH concentration, are 99.66% and 60.63%, respectively. And Au leaching is 58.90% and increases by 4.60% compared to direct cyanide of the dust. The effective removal of arsenic can not effectively improve the gold leaching efficiency. Fe, As and C removal rate, at 15% sulfuric acid concentration, increases from 0 to 33.65%, 80.38% and 12.59%, respectively. And Au leaching efficiency increases to 80.40%. Compared with sodium hydroxide aching, Fe removal with sulfuric acid leaching and twice 2 mol/L NaOH and cyanide leaching efficiency. Through once cyanide leaching after 15% sulfuric acid leaching and twice 2 mol/L NaOH and cyanide leaching, the total removal rates of iron, arsenic and carbon in the dust are up to 33.65%, 95.63% and 79.60%, respectively, the total leaching efficiency of gold is 91.90%, and the content of gold in cyanide residue is 3.31 g/t with residue rate of 80.33%. Compared with the direct cyanide leaching, the gold leaching efficiency increases by 37.60%.

Key words: gold concentrates; roasting; dust; impurity removal by leaching; cyanidation

Foundation item: Project(201515108) supported by the Funding Project of Xinjiang High Technology Research and Development Program, China; Project(201552) supported by Funding Project for Xinjiang Autonomous Region Strategic Emerging Industries, China

Received date: 2019-05-21; Accepted date: 2019-12-19

Corresponding author: ZHENG Ya-jie; Tel: +86-731-88836285; E-mail: zyj@csu.edu.cn

(编辑 王 超)