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Table 1 Primary properties of graphite fiber M40J

Type of fiber Elastic Poisson ratio Ultimate
P modulus/GPa strength/MPa
M40] 377 0.26 4400

Density/(g-em ) Ductility/% Monofilament dia meter/um

1.81 0.7 6

F2 HBESE ZL301 MLy
Table 2 Chemical compositions of aluminum alloy ZL301

(mass fraction, %)

Mg Si Cu Mn Ti Al Others

9.5-11.0 0.3 0.1 0.15 0.15 Margin -
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Fig.1 Packaged fiber preform
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Fig. 3 Microstructure of CF/Al composite, fiber arrangements and corresponding RVE models: (a) Microstructure of CF/Al
composites(SEM); (b) Fiber regular hexagonal distribution; (c) RVE of fiber regular hexagonal distribution; (d) Fiber diagonal square
distribution; (¢) RVE of fiber diagonal square distribution
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Table 3 Ultimate strength of graphite fiber M40J*! (MPa)

Direction Tensile Compress Shear
Axial X=4400 X=2200 S1,=513=332.0
Transverse Y=Z=169.5 Y =72=576.0 8$,3=233.6
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Table 4 Compressive mechanical properties of matrix

aluminum alloy

Allo Elastic Compressive Poisson’s
Y modulus/GPa strength/MPa ratio
Z1.301 79.7 418.9 0.33
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Fig. 5 Constitutive damage evolution behavior of ductile
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Table 5 Experimental results and calculated mechanical

properties by micromechanical model with different fiber

arrangements
Elastic Ultimate Fracture
Model .
modulus/GPa  strength/MPa strain/%
Regular
hexagonal 34.16 171.97 0.7862
distribution
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square 30.46 154.87 0.6953
distribution
Exfzazzent 31.87340.12  150.3041.68 0.6262+0.0486
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Microscopic damage evolution and fracture behaviors of
CF/Al composites subject to transverse compression loading

YANG Si-yuan, WANG Zhen-jun, ZHOU Jin-qiu, ZHANG Ao-di, WANG Zhong-yuan,
CAI Chang-chun, YANG Wei, XU Zhi-feng, YU Huan

(Key Discipline Laboratory of Light Alloy Processing Science and Technology,
Nanchang Hangkong University, Nanchang 330063, China)

Abstract: The unidirectional carbon fiber reinforced aluminum matrix composites (CF/Al composites) were prepared by
vacuum assisted pressure infiltration method. The damage evolution and fracture mechanical behaviors of the composites
under transverse compression condition were investigated by means of micromechanical numerical simulation and
experimental methods. The effects of interfacial bonding properties and fiber volume fraction on the transverse
compression behavior of the composites were analyzed. The results show that the micromechanical finite element model
based on a diagonal square RVE can well predict the mechanical behavior of the composite under transverse compression.
At the initial deformation stage, the interfacial damage and failure initiate at first, and then induce the local damage of the
matrix alloy near the interface. With the increase of strain, the matrix damage accumulates gradually and leads to the
local fiber failure. The microscopic fracture morphology of the composite presents the coexistence of interfacial
debonding and fiber fracture. The transverse compressive elastic modulus and ultimate strength increase with the increase
of interfacial strength, while the influence of interfacial stiffness is unobvious. Under the same interfacial property
conditions, the ultimate compressive strength and elastic modulus of the composites decrease with the fiber volume
fraction increasing.

Key words: CF/Al composites; transverse compression; micromechanics; damage evolution; mechanical property
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