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Table 1 Comparison of stabilization and solidification technologies of three wastes containing arsenic

A
Processes Reagents Stabilization form Advantages Disadvantages s .
content
Large agent
. Ca;(AsOy),, CaHASO,, . . . 5%—
Calcium salt CaO, Ca(OH),, Simple operation, consumption, slow 51
R Ca4(OH)2(ASO4)2'4H20, . 15%""
precipitation CaCOs low cost settling rate, large s0)
Ca5(ASO4)3OH .
amount of sediment
Good filterabilit Bad stability, risk
Ferric salt Fe3(As0;),, Fes(AsOy),, . 00aH era. i ac ST, TS (60]
L. FeCls, Fey(SO4); simple operation, low of secondary ~6%
precipitation FeAsO;, FeAsO, .
cost pollution
Chemical
ilizati Fast ti te, . .
stabilization Sulfd as dri‘a; 101; .rle.ite High solubility of
ide ood filterabili
l,l L Na,S, NaHS, H,S As,S; g. © L. ¥ arsenic sulfides in ~60%!"4
precipitation high precipitation .
. neutral and alkaline
efficiency
Calcium or ferric Good filterability, Bad stability, high
Collaborative salt, Active Fe3(AsOy),, Cas(AsOy),, high precipitation energy B
precipitation Fe-Mn adsorbed residues efficiency of heavy consumption and
oxide, ZVI metals cost
.. . Incongruent
L lubility, high
. FeCl,, Fey(SOy)s, oW .SO ubLity, g dissolution leading 25%—
Scorodite i FeAsO, 2H,O arsenic content, good (4]
FeSO,, O,, air . to secondary 30%
stability .
pollution
High requirements
. Fey(SO4)3, NaOH, . . . 20%—
Tooeleite ex H4)830 & Feg(AsO;)4(SO4)(OH)4-4H,0 High arsenic content for equipment, 25(;{51]
P weak stability °
Mineral Arsenate- Ca(NOs),2H,0, Good stability in .
S . . Weak stability in 152]
stabilization substituted (NH4),HPOy,, Ca;o(PO4),(AsO4)s-(OH), neutral and alkaline . K ~19%
. . acid environments
hydroxyapatite H;PO,, environments
Good stability, 1 L i
Arsenical-  AL(SO.)y18H,0,  Nay (H;0),Aly (SO4), . :r(;ensl: léalc{linow coﬁzgﬁlce 50—
natroalunite Na,SO, (AsO,).(OH)g-3y--(H,0)3,.+- e g 89161
: ’ concentration amount of sediment
Al,0;-2Si0,, . C licated
. 237 o51 . Good stability, low omp 1ca‘ ¢
Arsenic N(CH,CH,OH);, Nag(AlO,)s(Si02)6-r- R . synthesis [56]
. arsenic leaching ~6%
sodalite CoH,,AlO;, (AsO,)(OH),+, . procedure, low
. concentration .
Si(OCH,CH;), arsenic content

* The data is for reference only. The arsenic contents of the stabilized products may be different under different raw materials and operating

conditions. ‘—” means no data available.



230 B 4 W

Bk, & BT ORISR K IGE PR E i H AR S B 849

1.2.1  F5ERYIIEE

5 R VTUE V2 3 B A R AR AT T A R AR 5 45 2
AT A SRR AT 5 AR A DUVE (1 S5 B, SR B K A
Ak AR T BORPES T IRT H I o F 045 Eh A A
AAALES, AR WA, R R = A
PRI SR T T i, HARER SR DTV VA A BE /)N, il
T 4 A S F A JE PR AR o S e
K, 2R KUTTE SR E AR, T FLAR S T
WA S5V pH AR 0 FRERK, RS
USR] [, 304 a3k HAth 7 4 J B8 1 IR /K R DTE
EFNG KR B I, ER SRR RS, A
RKE RS ERAEE, BMESEd ST 2=59m
TR AR B 5 BB 1 A U TR A I R B A
800 ‘C N HE BB, nl Lo e My
ORAGS, B3 B DLAAAS Cas(AsO,);0H e,
ik Si0,. ALOs. MgO Fl CaO SR A 51
1000 C MEREARERIITITT, 45 R MgO. CaO
AT s ) [ E VR S 40l CaO AT R 5 I 2
PRI, R T AR T
122 BRERUUEE

BRERVTIEVE R B TR IR . R RRAR T 52k
BT AR ROV DU IR . ARk 1) e, R
e, HMmE RN pH I & H K EE AR AT
B TS R K R e K T A R S R A R R
T 75 21452 v (B e 38100 kb e vk Tt T
AT, SRIFEREE Z A,
FREk. TIREREE, LA AL BRI AR PR FA el X b
DUUEE 25 fn e R AR e PER AR, TE/K AR GV i n AR5
BB DR, gk R IR ) 26 42 1) 75 P o
1.2.3  BALUTIE:

TR A TVE VAT TR s 1~ S5 00 55 1 A0 ) IR AR e A
WAL DUTE I BR B, 3k 2 i B e RN 4 R 1 H
(220 5 RG22 4T NapS+ NaHS. HaS %5,
IR R BRATE B S AR AR IR, X BB E
T B AR AE R K o il = AR AL, B S EK
I S B T R A R DUUE S S o e 1
FEBL TR IR R RBGEE PR PEYIRE |
IR RE LSRN A, AR AR IR K IR B A N T
ZPO B E RR e A, B SPA
FNEREE () 20 1 AR DA A, 3 R IS G
1.2.4 WhFEFREN

N T IRBIE I B FRERRUR, W2 M
R [F AR E B . an7R) A Bk -2k 2R K
it fifi e s AT, o) gk k5 Ak 4 E 24 77 A R b 7 e
PR KA PR 2 A R R Ak — s A AL IR

BfF = e POV 5 o 3 T Bk AR A A 0 K i SR R A A1
FHBI2 R A )R MG 2k #h (FeCly) A2 52 iV 1) A
FEPo b A AR ARk KRR B A
FasETERAEE, Z™ A RIS B IR, A7 523 1R A
PR A B ) 26 10 i PEAA R (e A 8k (Z VD))
RE BRI, ST R A
ARSI e i, B8 2 A R AR e ) 5 T
AR AR FSCTTCIE AR I xR B RE D, (B AR
J B B S PR BT A FR 0 pHL IRLBE L PR SR IE TR
R S5 MM R, DR LA e 1k A B 1 R
HERKIMEL, st AR E I -

1.3 TYIREEk

PES R K R ) L B B Ae e fe it /8, T 4
R, FRE iR, HARRR e, e
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FOAT T SRAE B AR e A I, 45 R A A B
Bt (BREEREGBAMNT, MR
N 14.2%, TENFRELF=Y), HiEEmIK, 2%
B R IIE R

Wk LAY, RAAT T ZRAER
i AR RO EKIAHEE T 5 R AR —BUR R, &
AT HEAF I A5 . KRR 7R pH R
FasE A R pH (EIS, TENBHBLA S A5 B4 A 7K

A ) BRI, HR A AR . =
PP p i 5 B AN, X8 T B RRE AL
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T A R RS E A e TS T T T
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FOEMES . MES R EERD, T =P8 9 BB
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LR LPTIR, AR IR AL TR X i K o
FIBEAT kR, FERADKBGERG L TZ, fEmi e
JE T A B/ S R RO D T A SR REIA IR
1 AsySy AR E MERI H . T2 A 1 P,
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: Na,SO,+Water i
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@
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Hydrothermal mineralization
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Fig.1 Flow chart of removal and stabilization of arsenic by unary and binary hydrothermal reduction and mineralization process
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21 SKEJE#)

A T ZRHEFER RN HAE MR A ) 5 5 R 2245
GRS R T E R R 73 AL A i
pH=0.6, LK R WK 2.

2.2 FRALA

B 32 B R BRI AR B /DN, ORI 25
R, BB EOK P EEBE FREK. W
BRI AN AsySs, FeS IV BERLE S0 AN 2.1 X 107
F16.3X107"%, Kk, M=K Na,S IIAEH As(II).
Fe® (R i i, RIAT S R AR s B A i, i L
&R T IR R A 99% L b, B SN A0 T :

NaZS+H2$O4=H28+Nast4 ( 1 )
3H2$+2H3ASO3:A82S3l+6H20 (2)
H,S+Fe*'=FeS|+2H" 3)

ST T, BRALDURM M R R R s 408
pH=4.0, n(S*):n(As)=3.0:1, NIEEN25°C, KM
I 1] 60 min. FERLZEAT T, BRALTTRRIIUTE Z0] 5
1% 99.65%, BRALUUIE & 59.19%, FHi 36.87%. Xf
ZUTEHEAT SEM-EDS. XRD £AiF, Z5% WA 2.

w2 SEEKEIAL Y

Table 2  Composition of arsenic containing wastewater
(mg/L)

As(lll) As(V) Sb Pb Cd Fe Na
12562.00 430 48.63 150 12.60 84.20 1853.80

(@)

B2 TR MRS R

FH I 2(a)rT %1, BRALDTIEA I X 2 AT 0455 5
i, Ui ZDTE A2 T e LK SEM 45 H LI 2(b)Fl(c),
AIAITEETE As,S; UIEHE EZ A M ZIMEL. 41781
SRR 2 B A0 KRR AL, A 385/
FIAH BRI, B A EL. LK. EDS 45 3 LK
2(d), ATENZYIE & 63.0%, S i 37.0%, n(S):n(As)=
1:1.4, HE As,S; i AR T-LE, B AT e i
VUUENTCE T AsySyo 148 TCLP WX BRAL BT IE £k
TEEVERTI, AR RIS ) 212.9 mg/L, JETH
#& GB 5085.7-2007 H fes | [ [ 44 5% HW24 ) fa i
Bk, TP,

23 As-S A—IU/KMIERH AR EM

NT B = EAG R TE AR E M, SRR HGE
JEAT™ Al T AU B/ 8 P IR AR ) P B4 88, 4
RS =B RO e A g M S R TR

Element wi% x/% [
S 3697 57.82
As  63.03 42.18 B

Fig. 2 Characterization results of As,S;: (a) XRD; (b) SEM, low resolution; (¢) SEM, high resolution; (d) EDS
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TEKBE R A B, FRE— 2 1) As,Ss
DUUE, FERREL AsySs WLTE T L 1) 5% 11078 41 B 22 /K #
RIS, FHIRE N 6% Na,SO, VAW, iK%
2 (AT FEIE B 70%, %5 B JE BN BE AR TR 2
240 CJafRiR 12 he RMNARGAHBERG, X
TG 1) AsySs EHET E HEAT R .

KK AT XRD. SEM-EDS F1E, 455 LK
3. HHE 3 &1, SKBGEEYLH As,S; PUHEE
a2 I T AR, KB AT HIES As,Ss
YR(PDF: 71-2435)RFIEVE E A% M, RIATEE TR
As;Sy ZIKIIE RGN AsySs divids, RIMERE .
SEM-EDS & 45 5 WL 3(b)Al(c), FE1K A% SEM K+,
JUFAR DA/ Fa BRI/ NORE, HA KERE KT 100
um [RIMETE FhARBR, 7675 SEM B rh, Sk B i 5
. Bk, VM. EDS 45 R ERUIE &
fift 61.4%, 0 38.7%. MEPE SRR TCLP F Al
IR IR N 3.86 mg/L, 5 As,S; UIVE IR H #PE 45 1
FHEC R B PR, BRI LG As,Ss dhidcfa e v
BERTE A KIFEALS 1) As,S; SR & il 58.54%,
B 35.43%(% 3).

H T 5 1 el T AR AR R A, R
TR RN T HABRR M, XK T4 A
A

K3 IUKRE R BRI LY
Table 3 Chemical composition of slag from unary

hydrothermal reduction and mineralization (mass fraction, %)

As S Sb Na Fe Others
58.54 35.43 0.5 3.2 0.48 1.85

(@)
+— As,S, (PDF#: 71-2435)

B3 oK RIE L R AL S5 R

2.4 As-Fe-S R ITTIKIIT R 1L A2 E i

MR 2.3 IRIR L5 R W] W, TEE T M) As,Ss PTIE LT
IKBGRIER G, A TR ik, HRet R
M. BTSRRI R T B
SRS, BAEMERE . HMERSESTY), HELS FeS. &
PR SEAEA, AR R R BRERDTE « W PRI A (0 B 9T
DRI, AE S mh R A 2% O AU, 4 As-Fe-S R
JOKPE R E I T2, WA A sk e alse
DA A E AL o

FE/K PG JEH WL AR Y, e FREL— & iU 1) As,Ss
DUSE, FH% n(Fe):n(As)=1:3 I FeS ViiEFLHBLH),
TEFREL AsyS3 TUTE A 5.0% F0 R 4 B 25 /K 3 s o 48
W, BB 6% Na,SO, VAW, 1K #iv e
L ZE A TE LIS B 70%, % dE BON B AR T E
240 CJEfRid 12 he RMZRAREA R ERG,
X 7K B BT S AT A o

Fig. 3 Characterization results of slag from unary hydrothermal reduction and mineralization: (a) XRD; (b) SEM, low resolution;

(c) SEM, high resolution; (d) EDS
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(a)
. +— As,S, (PDF#: 71-2435)

4 TIUKIE R RS R

Element w/%  x/% s
S 3118 46.12 |
As  21.10 1335 [
Fe  47.72 40.53 |

38.15 58.43
5725 37.52
459 4.03

Fig. 4 Characterization results of slag from binary hydrothermal reduction and mineralization: (a) XRD; (b) SEM, low resolution;

(c) SEM, high resolution; (d) EDS

W “IeK I LB HEST XRD 5 SEM-EDS AL,
SERILE 4, HE 4)RT AL, TEEE AsyS; ULIE S FeS
DUEIRA J5 AT KA AL, 15 B S8 2 As,Ss e i,
H X SR ATHIES As,S; SR (PDF: 71-2435)FIH51iF
W 58 4 X0 N7, AL 35 A RS U G A it AR RO AT S 0, 15 B
FE SR A N 49 B2 HE BB RGBT Bk k)
AW . SEM K4 2 0L 4(b)Fi(c), TEfKfE SEM
BIrb, BRI /NBOR AR BB SR AE— k2, HA KRERLAE
50 pm Ze A AR S fE i SEM BT, BRI R
A, A/ BMMMEL. EDS 4R BoR, HE
B 2 RIS 1R300 (A) B BRI P 38 LA VN 21.1%
47.7%F0 31.2%, BoerIE s B, m S EA
57.3%- 38.2%, TMEE RN 4.6%. XRF faill4h
W3R 4, ZIuKPGEETE S 45.37%. X J0
IR IR B PR EAT 7RI, AR R BE N 2.65
mg/L. 55— oKL JE AR, AhEE R
BB BAR, IR 3] 74T As,S; DlyEFase M H 1,
BT R ) PR K rR R I B R R e ARt TR R
T

F4 TIUKIGEER I L
Table 4 Chemical composition of slag from binary

hydrothermal reduction and mineralization (mass fraction, %)

As S Fe (0] Others
45.37 38.88 13.15 0.59 2.01
3 ZEig

1) BALUTIEE B KT 22 A IA F] 99.65%, 15
FIMTCETE Asy)Sy ULIE; TE TCLP FEHAR I A [ fisyg
FEmik 212.9mg/L, Sil/K#GEIEN LR, Tefm
A S; UTTEFAAL N As,S; diddk, HAf & &AL 58.5%,
I IR B AT % 22 3.86 me/L, (KT a6 K 74 ik
(35 R FEFR1E 5.0 mg/L.

2) KM As-Fe-S R —Ju/K# 6 T Z AL BRAIG
TR, B DAMERE kA ROGEERE . AL ) IRE )
TSI T RE . ARE = E TCLP PRI
TR FE N 2.65 mg/Lo
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3) KABRALTTI-As-S & — oKL 5T L K

arsenic-containing cobalt and nickel slag and preparation of

As-Fe-S F ZJu/K#T b T 2 Ab 31 i 2 /K R A A 7E
T ORI BACTIE % = U BR i g K A @)

arsenic-bearing compounds[J]. Transactions of Nonferrous

Metals Society of China, 2014, 24(6): 1918—1927.

RAKIGEBD LT SRR Ass viererey 028 WRITRIER ETERs, o

WESLE, dem T As2S3 DUERIARERE, RARFIL T XUAN Zhi-qiang. A brief account of Chinese arsenic

TR AR M RRE L, SR, AF resources[J]. Geology of Chemical Minerals. 1998, 20(3):

TORMEFEARAR A DM 22 L, Db SR 23 ] 75 5K 8-14.

[91 KRB, i MRT5 IR 48 R B YR AL AL 3] S BRI 5E [D]. 8t
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Technical idea of stabilizing arsenic via hydrothermal reduction and
mineralization based on geochemistry

HU Bin, YANG Tian-zu, LIU Wei-feng, ZHANG Du-chao, CHEN Lin

(School of Metallurgy and Environment, Central South University, Changsha 410083, China)

Abstract: Arsenic is one of paragenetic and associated elements in non-ferrous minerals, which is enriched in “the three
wastes” containing arsenic during the smelting of nonferrous metal processes. The safety disposal of wastewater
containing arsenic has troubled nonferrous metals smelting enterprises due to the strong carcinogenicity and toxicity of
arsenic. This paper firstly introduced the sources and harm of wastewater arsenic-containing. And then the stabilization
technologies including chemical stabilization and mineral stabilization were reviewed. By comparing the advantages and
disadvantages of stabilization technologies for treating wastewater containing arsenic, and referring to the mineralization
rule of arsenic in geochemistry, a sulfidization-hydrothermal reduction mineralization process of arsenic was proposed.
The results show that, firstly, 99.65% arsenic in wastewater containing arsenic was precipitated in the form of amorphous
As,S; by using Na,S. Then the leachate concentration of arsenic of amorphous As,S; in TCLP test is 212.97 mg/L. Next,
the hydrothermal reduction mineralization process in As-S unary system and hydrothermal reduction mineralization
process in As-Fe-S binary system are adopted to transform amorphous As,S; to orpiment and orpiment and iron-sulfur
system (pyrite, ferrous sulfide) mixture separately. And the As leachate concentration of these corresponding
hydrothermal slags in the TCLP test is reduced to 3.86 mg/L, 2.65 mg/L separately. A satisfied result of removal and
stabilization of arsenic from wastewater are achieved by the novel processes, which provides a promising way to remove
and stabilize arsenic from high arsenic containing wastewater.

Key words: arsenic; arsenic trisulfide; stabilization; hydrothermal; mineralization
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