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ABSTRACT

optimum ultimate open pit limits. Since then many such numerical methods have been reported one after an-

In 1965 Lerchs and Grossman presented the famous graph theory method for determining the

other in the literature concerned. Based on those methods, the principles for the optimum design of the open
pit limits have been demonstrated in this paper. Upon these principles an optimum eriterion to design the open

pit limits was established to evaluate, improve and apply the present numerical methods, also to study and ap-
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proach the new ones.
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1 INTRODUCTION

Now there are two prevailing ways to classr
fy the various design methods of the open pit
limits, which are the manual methods and the
computer methods based upon the calculating
means, and the rigorous algorithms and the
heuristic algorithms based upon the calculating
precision' "*'. With the calculating principles,
these methods can also be classified. This classt
fication can not only evaluate the operation effr
ciency and development prospects of the design
methods by itself, but also demonstrate their
technical characters and improving avenues in
theory.

A concept system, which was established
with the help of set theory, can give a common
description and abstract generality for the princi-
ples of the design methods such as the graph the
ory method *!. These principles give a sufficient
and necessary condition for an optimum open pit
limit. The condition can be used as a criterion to
examine the optimum open pit limits, also as a
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standard to judge such design methods.
2 CONCEPT SYSTEM

Without loss in generality, taking the two
dimensional case for example (see Fig. 1), a
concept system for describing the optimum de-
sign of open pit limits is established as follows.
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Fig. 1 Two dimensional ore body model

(1) Block and its mass
A basic unit volume mined in the pit is

called a block, which is marked b; ( see the

square in Fig. 1). Every block b; is given a real
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number m( b;) as its mass (see the number in
the square in Fig. 1), such as m( b3s)= 1. The
mass of a block is an abstract title, which may
have relevant economic meanings in various cas
es, such as the net value of the block for its one
meaning, which is the difference between the
value of the ore contained in the block and the
cost for extracting it.

(2) Supporting structure and supporting set

For the blocks there exists a restrain rela
tion to mine them. The relation is called sup-
porting structure among the blocks, which cor
responds to the slope structure of an open pit
limit. The supporting structure can be described
by a supporting model or a supporting pattern of
the blocks'*>'. Upon the supporting structure,
a block set I'( b;) can be defined for any block
bj and is called the supporting set of the block
bij?

bj. For the simplest case, it is assumed that the

which represents the blocks to directly cover

block is a cube and the maximum slope angle is
45° in all areas and directions of the mine, then

the supporting sets of any block b;, except for

i
those in the first low, consist of three blocks,
namely, U(b;)= {bi_ 1 , =i Zl, m=j- 1],
j+ 1),

(3) Ore body model

There exist sets B= {b;}, M= {m(b;)}
and A= { I'( b;)}. Three systems, which consist
of the sets above, (B), (B, M) and (B, M,
A ) are called a block model, an economic model
and a mining model of the ore body, respectiver
ly.

(4) Closure

In the system (B, M, A ), aclosure is a set
of blocks C;, that is, if a block belongs to C,
then this block’ s supporting set must also be
longs to €y, In other words, if by €C,, then T
(b;) CC,. A closure represents a feasible open
pit limit. If C;= @ then it is called an empty
closure and marked C¢. All of the following
block sets are the closures, Ci= { bis, b1s, bie,
bas}, Ca= CyUf biy, bis, bz, bas, basf, Cs=
C1Uf b1, b, biz, by, bas, bos baz), Ca= C;
U{ b17, bis, bae. ba7, baa. bss, bae, bas), Cs= Cy
Uf bro, bas, bz7)and Ce= CsU{ bus, baes, bss).

There exist two closures C,and C,, f C, < C; or

C, C C, then C, 1s the subclosure or the real
subclosure of €, such as C; CCsand C{ C(C5C
C,CCs5CCs.

(5) Mass of closure

The mass m( C;) of a closure C is the sum

of the mass of the total blocks belonging to C;,
namely m( C;)= [ ;(Vm(bij),such as m(Cy)=

L, m(Cy)= =1 m(C3)=0 m(Cs)=4 m
(Cs)= 6 and m( Cs)= 5. Obviously, m(Cgy)
= 0.

(6) Profitable and lossy closure

If m(Cy) 20, then C, is called a profitable
closure, otherwise a lossy closure. If m( C;) >
0, then a real profitable one. Among the 6 clo-
sures above, (5 is a lossy closure, C3is a prof-
itable one and the other real profitable ones.

(7) Strong closure

Assuming C, is any subclosure of the prof-
itable closure C;, if m( C,) <m(Cs) , then C; is
called a strong closure, which is equal to an opti-
mum open pit limit in some stages. €, €4 and
(s are strong closures, also the empty closure C¢
1s a strong one.

(8) Maximum closure

In the system (B, M, A), a closure with
maximum mass 1s called a maximum closure,
which is an optimum limit of the open pit, such
as Cs being a maximum closure.

(9) Increment-closure

An increment set between a closure C, and
its subclosure C, defines an increment closure,
noted as I, ,= C,\ C,, which is called the incre-
ment-closure of C,(for C;). For example, I, i,
Is1, Is4, [l¢4 and [4 s are all incrementclo-
sures. Any closure can be regarded as an incre
ment-closure of the empty closure, namely, C,
= I, «,s0 a closure is a kind of special form of an
increment-closure.

Similar to some concepts about the closure,
following concepts such as mass of an increment
closure m (I, ,). subaltern. vrofitable. strone
and empty increment-closure can be defined.

(10) Common compensation between incre-
ment-closures

There exist two lossy increment closures
I, ,and I, ,, namely m(1, ,)< O and m(1I, ,)
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<0,and I,, NI, , Z® Noted as I,u, ,= I, ,
Ui, ., if m(1,u,.,) >O, then there is a common
compensation between [, , and I, ,, I,u, , 18
called a common compensation increment clo-
sure. For example, m(1, )= - 2,(131)= -1
and m(I,u3 1)= 1,s0 that , I,u3 1 1s a common
compensation increment-closure.

(11) Help compensation between incre
ment-closures

For a profitable increment-closures [, ., 1
e., m(1I,,) >O, if there is a division [, ; and
I, .of I, ,, namely [, (Ul ,= I, , and I, | N
I, ,= ®and m(1,,)< 0, m(I,,)> 0, then
there is a help compensation between [, ; and
I, ,, and I, ,is called a help compensation incre-
ment-closure. For example, m(l¢4)= 1 and m
(lo5)=— 1, m(Is 4)= 2,50 that 14 41s a help

compensation increment-closure.
3 FUNDAMENTAL THEOREMS

Theorem 1: If there exist a strong closure
C, and its strong increment-closure /, ,, then the
closure C,= C, U, , is also a strong closure.

Proof: Any subclosure of €, can be ex-
pressed as Cy= (C,NC,)+ (C,\ C,), due to
(C, ﬂC,) cC,and (C;\ C,) <1, ., then m
(C)=m(C,NC )+ m(C,\ C.) Sm(C,)+
m(l,,)= m(C,), sothat C, is a strong clo-
sure.

This completes the proof.

Theorem 2: In a profitable increment-clo-
sure I, ,, there must be one of its subincre
ment-closures, which is a strong incrementclo-
sure.

Proof: If I, , is not a help compensation in-
crement-closure, then [, , is a strong increment-
closure in itself, otherwise [, , has a real sub-in-
crement-closure [, , which is a profitable incre-
ment-closure. Repeating this process for I, ., a
strong increment-closure, which is a real sub-in-
crement closure of I, ,, must be found. This
completes the proof.

Because the closure is a special form of the
increment-closure, an inference of theorem 2 can
be obtained.

Inference 1: In a profitable closure, there

must be one of its subclosures, which is a strong
closure.

Theorem 3: The sufficient and necessary
condition for a strong closure C; being a maxi
mum one is that there does not exist any strong
increment-closure I, ; of C;, which is not emp-
ty.

Necessity proof: Assuming that C; is a
maximum closure, if there exists a strong incre-
ment closure [, ; of C;, from theorem 1, there
must be a strong closure C,= C; U7, ., and m
(C,) Sm(C,), which is contradictory to the
assumption.

Sufficiency proof: Only need to be proved
that the mass of any closure is no more than the
one of C;. Any closure C, can be expressed as C,
=(C,NC)+ (C\ C,). As(C,NC,) <,
then m( C, ﬂCS) <m(Cs) From the condition
and theorem 2, there does not exist any prof-
itable increment-closure of C;, then m(C,\ C,)
=m[(C,UC)\ C,] <0. Hence m(C,)=m
(CNC)+ m(C\ C,) Sm(C,).

This completes the proof.

4 NUMERICAL METHOD AND GENERAL
CRITERION

Upon theorem 3, a basic program of the
numerical method for determining the optimum
open pit limit can be given as follows.

Step 1:

Let k= 0, given the first strong closure Cj
= Cy.

Step 2:

Let k= k+ 1.

Step 3:

Search for a strong increment-closure [j ;_ |
of the current strong closure Cj_ 1. If there is
not I -1, then go to Step 5. Otherwise go to
Step 4.

Step 4:

Let C,= C)_ U[k, i— 1. 20 to Step 2.

Step 5:

Terminate. The current strong closure
Cj_ 1 1s a maximum closure.
method above
summed up as a general criterion for the optr

The numerical can be
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mum design of the open pit limits: searching for
a strong increment-closure of a strong closure.

5 CONCLUSION

In principle, the graph theory ( Lerchs and

51 the network flow ( Johnson)!'®!,

[

Grossman)
the moving cone ( Pana)'”l of the computer
methods and the pit bottom scheme ( Fang Z.
and Shi Z.)"® of the manual methods, deter
mined the open pit limits all upon the general
criterion.

The graph theory and the network flow be
long to the rigorous methods. It can be proved
that the searching for the maximum closure in
the graph is equivalent to search for the maxr
mum flow in the network.

The moving cone and the pit bottom scheme
belong to the heuristic techniques. The original
design criterion of the moving cone is to search
for a profitable increment-closure, so the help
compensation between the incrementclosures
will arise, which makes the limit greater than
the optimum one. The real trouble is that the
moving cone, similar to the pit bottom scheme ,
simplifies the form of the increment-closures. It
is difficult to handle the common compensation
between the incrementclosures, which makes
the limit smaller. So the solutions of the two
methods are mostly approximate.

Lemieux’ s algorithm'®! and Korobov’ s al
gorithm'' are two improved moving cone meth-
ods, but in theory and application they can not
thoroughly overcome the main technical weak-
nesses of the moving cone method.

In principle the network flow method and
the moving cone method can be traced to the
same origin, also in technique they have some-
thing in common. A mixed algorithm , with fast
calculation and accurate solution, can be ob-
tained by combining the two methods. The im-
proved Korobov’ s algorithm presented by Dowd

and Onur is such an attempt' 'l

The dynamic programming method of the

computer methods is also a kind of numerical

methods[2’3’10], but it 1s different from the

methods above in principle. The classical manual

method is a mathematical analysis' ' "I

[t is necessary to point out that the numerr
cal methods discussed in this paper have nice op-
erability. Methods of this kind can give not only
the final calculating information, but also the
stage calculating information in time. Therefore,
by making some technical adjustments about the
ore body models, these methods can be used to
optimize the initial limit, stage limit and produc
tion scheduling of the open pit mine.
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