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Fig. 1 2.5D shallow-straight joint woven and schematic
diagram of fabric appearance: (a) 2.5D fabric appearance;

(b) 2.5D angle-interlock architecture
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Table 1 Property of M40 carbon fiber
Average Tensile Elastic Density/
diameter/um  strength/MPa  modulus/GPa  (g-cm )
6.5 4400 392 1.77

R2 25D RTHBIMALESH
Table 2 Weaving process parameters of 2.5D shallow-straight

joint woven

Parameter Value
2.5D fabric
M40JB-6000 carbon fiber
200 mm X250 mm X5 mm
6K X3 shares

Fabric name
Raw material
Fabric size

Warp fiber specification

Weft fiber specification 6K X 2 shares
Warp density 12cm™!
Weft density (4£0.5) cm™!
Volume ratio of warp to weft 65:35
Fabric mass 0.9 kg
Volume fraction 50%

R3S SRS
Table 3 Chemical composition of aluminum (mass
fraction, %)

Si Mg Cu Mn Ti  Others Al

0.3 9.5-11.0 0.1 0.15 0.15 - Bal.

1.2 ZWHE

KA E TR JRB %% 2.5D A B S 2
CyAl SAEMEL, W A8 MR AR RAE A R <A
— B INFIEE 720 °C, LRYETHI AR I R EE A 560 C,
TERB I E S WA TEN Ny, ARSI
bRy I, THIATE 7 MPa (15 71 F 78 BL iR,
2524 20 min, #5433 R5EA 200 mm X250
mm X 5 mm FIHCIREZ AL

KAE I Z2YQ250/400 T B E %K J1iRB
N PR RIEE ST R L S, wasii
B BB, RAeEE, BE. EAESHTLL
MR SIS BRI EoR, 05k W
AP M e R E S, ES R, R IR B
BOLUR, RAFEBESEMEHN RS, BN
FARFa bR N = TAE /18 12 MPa, fem TAERE N
1000 ‘C, WZPREZE <10 Pa, LAENF N4IE=>
99.99% I A TG )X B R B IR E A ORY, 2R
FEFEANES C, FHEBTH <2 h,



2530 B 3 W

AR, 45 2.5D-C/Al EAaREHNE w12k R L ATE M RAT 509

A

7—. p
77777

. Cooling water
Lift and

rotate plug\E

Insulation cover

Heating coil

Insulation cover

Cooling water

Digital control
and display

Vacuum Crucible lift

2 ATFHENRBRESHEARERE
Fig.2 Schematic diagram of vacuum pressure impregnation
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B3 2.5D-CyAl B EFEHLHBRE
Fig. 3 Tensile physical drawing of 2.5D-Cy/Al composite
material (Unit: mm)
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ZL301 &4&H) Mg 03 FIFEAE LA RS AR 15 58
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SERURE . 2.5D IR AR CYAl HEMEH R %
FERE AR S DU B K5, AR R RE RO, BI4F
YE[A]FIAIBRER /N o FRYE Yong-Kelvin 77 FE(LF(1)), Tl
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IR SR e et o N E e e b cae o] Ly DA AT i N PN
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FHZB AR ) T ZESEUN A 4 TRARETE PRI H]
FRBIE IR FE BT, F4ERHRmE L
ERBIRET RS W T RAETERIRIBIIILIR, 41
BB L2 B — 5§ o FLIR 2.5D BT 4Egm 23551911
YR A, 2.5D A B ASE MII& M 41 4E 2 1F
SRATAE AN, Z M FIREEENSGYOLE 1); mMEE
MBI EA L T, TEIREY T iR
W& R B B B 2D A7 4 W R G oy, 1
L0 28 20 RS 4 ) 1 70 B SRR G 8L
KECMA, ZL301 HEfR& G4 Fib e i o, i)
PEZ, ERMNEEPERRSINAESYE, 55k
TALEFIRIB MG, i SLhRB R R S AR
VG

F 4 2.5D-C/Al BEM BRI BIS0H
Table 4 Average density of 2.5D-C¢/Al composites

Theoretical density/ Actual density/ Density/
(gem™) (gem™) %
2.18 2.098 96.2
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Fig. 4 Macrostructures of 2.5D-C¢/Al composites: (a) Cross

section; (b) Longitudinal section
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Fig. 5 Microstructures of 2.5D-Cy/Al composites at different
magnifications: (a) 2000 times; (b) 5000 times; (c) 20000 times
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Fig. 6 EDS analysis and XRD diffraction pattern of
2.5D-C¢/Al Composites: (a) EDS analysis; (b) XRD pattern

IZH JEM 2100F BU37 K 5 i 0 JE 51l B il 2
2.5D-C/Al EEMERIFEIES, Wl T(@)fiR. H
Kl 7(@) T LLE ), C/AL EaMRH B A mE, 7
12 B L) 227.4 nm,  FTECPEE, FE K2 X
W T, BREFEA — e 40, RIUNEF Sl St
SRR, AR, SR E S, S
THT Ak 5 3L W S (R bR S T A, ST SOE 78 4« £ 7(b)
WTLLEH, A ALC, A HRAE S 2 2 5 i
S Al 2R N K, 12 Tmage-Pro Plus 15 H A
#7327.6 nm. %% 35.3 nm. & 4105 RN AT
S A] DA S A MR S S AR, de
A MR 12 PR

B 7 2.5D-C/Al B&MBH I 2 1 500 5 1 & B4 (1
TEM 1%
Fig. 7 Interface morphology of 2.5D-C¢/Al composite(a) and

TEM image of reactants on interface(b)
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Fig. 8 Tensile strength of matrix and 2.5D-C¢/Al composites
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Fig. 9 Tensile fractures morphologies of 2.5D-C/Al composite in warp direction at room temperature and high temperature:

(a), (b) Room temperature; (c), (d) 350 ‘C; (e), (f) 400 C
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Fig. 10 Stress—strain curves of 2.5D-C¢/Al composites: (a) Comparison of three curves; (b) Room temperature; (c) 350 C; (d)

400 C
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Fig. 11 Tension mechanical behavior of 2.5D-C¢#/Al composites under warp direction
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High temperature mechanical properties and deformation fracture
behavior in warp direction of 2.5-C{/Al composites

HU Yin-sheng', YU Huan', XU Zhi-feng', WANG Zhen-jun', WANG Ya-na’

(1. National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology,
Nanchang Hangkong University, Nanchang 330063, China;
2. Beijing Institute of Aeronautical Materials, Aviation Industry Corporation of China, Ltd., Beijing 100095, China)

Abstract: 2.5D shallow-straight joint woven C¢/Al composites using M40 graphite fiber as reinforcement and ZL301 as
matrix alloy was fabricated by the vacuum pressure infiltration method. The volume fraction of 2.5D shallow-straight
joint woven C¢/Al composites is 50%. The density, microstructure and interfacial structure of 2.5D shallow-straight joint
woven composites were studied, and the mechanical properties were tested at room temperature, 350 and 400 ‘C and the
fracture morphology and deformation fracture behavior were analyzed. The results show that, the compactness of the
composites reaches 96.2%, and the microstructure is complete, the fibers are evenly distributed, and there are no obvious
casting defects in the microstructure. Most areas on the interface are relatively clean, there is a rod like Al,C; phase on
the interface. The tensile strength of 2.5D-Cy/Al at room temperature, 350 and 400 ‘C are 531, 451 and 408 MPa,
respectively. The loss rate of high temperature strength is only 23% and its stress—strain curve is non-linear. The tensile
fracture process of composites at room temperature and high temperature can be divided into three stages, matrix loading
stage, fiber loading stage, damage and fracture stage.

Key words: C/Al composity; 2.5D shallow-straight joint woven; vacuum pressure infiltration; high temperature

mechanical properties; fracture behavior
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