Vol. 8 No 2

Trans. Nonferrous Met. Soc. China

Jun. 1998

OPTIMIZATION OF CUT-OFF GRADE IN OPEN-PIT

BASED ON CONTROL THEORY

®

Xie Yingliang

Department of Management,
South Institute of Metallurgy, Ganzhou 341000, P. R. China

ABSTRACT A new method for the optimization of cut-off grade in operpit was put forward, which was
p g pemrp p

based on control theory. After a brief introduction to the analytical framework of caleulus of variations with an

overall equality constraint, a mathematical model for selecting an optimum cut-off grade funection was con-

structed, which aimed at the maximization of total present value of an open-pit. Then a comparison was

made, and it was shown that the new method yielded the same solution results as the traditional ones, and in

some cases it avoided the iteration process which was needed by those traditional methods due to the mutural

determination of cut-off grade and the maximum total present value of a mine. At last a caleulation example

was given.
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1 INTRODUCTION

In an operrpit mine the cut-off grade is an
operation control, used as a guideline to seperate
ore and waste. The purpose of the calculation of
optimum cut-off grades is to maximize a mining
firm s total present value. Over the last three
decades, great progress has been made in the
study of the economics of cut-off grade '™ 71
The application of modern economic theories and
concepts such as marginal analysis and opportu-
nity cost resulted in a sound understanding of the
subject among both mineral economists and in-
dustrialists, and having a declining cut-off grade
series for maximization was widely accepted and
applied in mining practice. A number of mathe
matical models have heen built for the calculation
in which an iteration process was involved due to
the mutural determination of optimum cut-off
grade and the maximum present value of a mine.
A new method based on control theory, or more
specifically, on calculus of variations was put
forward here. This method produced the same
solution results as the existing methods and in
some cases, for an exponential distribution of
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grade, for example, the iteration process in the
calculation was avoided. Besides, it may provide
a new tool for the modeling of more complicated
cut-off grade studies such as problems with cycli-
cal metal price fluctuations within mine life.

2 ANALYTICAL MODEL OF CALCULUS
OF VARIATIONS' !

A classical model of optimization by calculus
of variations is to select y~ = f (x) from y =
f(x) to maximize or minimize the objective
functional function 7(y)

Xl ’
i) = [ Fee vy
l’()
with the boundary conditions of y(x¢) = yoand

y(x1)= y1.

imization or minimization is determined by Euler

The necessary condition of a max-

equation:

Fy — Ly

SR =0 (1)

/ . .
where Fy and Fy are the calculus of variations
. / .
of I concerning y and y respectively. For a
maximization with an overall equality constraint,

. e., a constraint in a form as
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f‘G(x; y. ¥ )dx =
X()

where K is a constraint constant, we introduce
a Lagrange/ s function L,
L(x7 Y y/r }\) = F(x7 ¥ y/)/_
No(x, y. v )
A is a Lagranges multiplier,

where and re

places F' in Euler equation with L, then the nec

essary condition for maximization is obtained:

d.
Ly - dey = /O (2)
where Ly and Ly are the calculus of varia

. . / .
tions of L concerning y and y respectively.

3 MATHEMATICAL MODEL OF OPTIMUM
CUT-OFF GRADE BASED ON CONTROL
THEORY

The commonly accepted dynamic analysis
suggests that the cut-off grade, a, is a function
of residual mine life, hence a function of time,
Le. a= h(t).
theory, the study of cut-off grade is to select a
= k' (t)from a= h(t) to maximize the total
present value of a mine under the constraint of

Therefore according to control

given mineralized material within the pit limit.
Letting R and C be respectively the rev-
enue and the cash cost per unit of time ( per year

in this paper), then, R = Q&K and
C= (Q f“+ cQ+ Fy

() —Concentrator feed rate,
of mineral in ore feed that is recovered in concen-

where € —¥'raction

K —Net value per unit mineral con
m —V ariable
¢ —Variable
F() _FIXPd

cash cost per unit of time; p —Fraction of mined

tration,
tained in concentrate products,

mining cost per unit of material,
concentrating cost per unit of ore,

material which is of higher grade than the cur-
rent cut-off grade, a, and then classed as ore,

and it is obtained as

p= Jetzi

a —Average grade of selected ore, it is given by

-1
a= ) J.‘azg(z)dz

where g(z ) is the function of distribution den-

sity of ore body. Then the present value of the

net cash flow Uat time ¢, is given by

— m o

V= [Q8K - (Q S+ cQ+ Fo)Je Y
where 1 —Discount rate, t; —Residual life of a
mine at the present time. Therefore, the total

present value of the mine, V. is

V(a) = f‘vdt (3)

by
Since the mined material required for the
feeding of ) at the cut-off grade is Q/p, the

overall equality constraint is
[1 Q
dt = Qo (4)
[() ])
where Qo

al remaining within pit limits, on which the estr

—Amount of minerakhearing materi-

mation of distribrtion density is based; to —T ime
point at the end of mine life, hence to= 0.
h(ty) is de

termined by the constraint equation, and h( tg),

For the boundary conditions,

1. e. the cut-off grade at the end of the mine s
operation, is given by break-even analysis which
yields the lowest level of cut-off grade for a
mine. According to Refs.[ 3] and [ 5], then

h(to) = %LQ

Let F= v, and G= Q/p,

tion was constructed:

a Lagrangeian func

L(t, a,a)= F(t, q, a/)/—
N(t, a, a)
According to Eqn. (2), it is obtained as
d
LCI_ deCI/ = O (5)

where Ly= 0 anii Lo= Fq— N5y
[()EKF—M— mQF, d"é]e““

.dﬂ — (-t

[Qg< E)I_anﬂ (t=1t)
_Qdp
)zda

Applying Fa and C to Eqn. (5), then
[QEK o J.n_Q dJL i)

) 2 "
VEe (6)

Ga= 06, 5 d’“

This equatlon, together with the boundary
condition h(tg) and the constraint equation,
gives the solution of optimum cut-off grade a

For an exponential grade distribution densr
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ty, i.e. g(z) = be” ” , one has
= Jlbe“‘ “dz = et (7)
and
i= [t ar T gy
where «a and b are constants of the distribution
density.

The combination of Eqns. (7), (8) and (6)
results in
(QeK- Qbme"™ “Je '7 " = Nbe'
After some rearrangements, it is yielded
b a g{e—i(zl—z)
T obfme Yy N

from which the optimum cut-off grade function

Is obtained,

&K e i(z,l— L) a

b me (Y 4 }J+ (9)
where  Aand ¢ are derived through Eqns. ( 10)

and (11) as follows.
Using the boundary condition of t¢9= 0 and

concerning time, a

a = '[];ln

h(to) , then from Eqn.(9), there is
C + F(Z !2 _L g{ve_ill a
= T In = +
& b bfme 1+ N

(10)

By means of the constraint equation, then
[1 [1
Q(): I th: I Qe[)ﬂ—adt
ty P by

Applying a  to the ahove equation, and after re-
arrangement, it is obtained

‘| &K o ife=t)
= . dt
Qo I[()Q bfme 7 N
This equation results in
(2&& m j; A
mib In me "1+ }\ Qo (11
When Qo + 00, this means that there is

no constraint on the quantity of mineralized ma-
~ ooand A 0. In
this case, from Eqn. (9), it is obtained
1L wta . m
e

b~ &K

terial of a mine and then ¢,

a— ba

Considering_bL: a- a ande = p, then

pla- a) = -gg (12)
Eqn. (12) is exactly the same one as Eqn.
(9) obtained by Schaap in Ref.[ 3].

i .
+ o090, this means that the
mining firm places the paramount priority to the

and then from Eqn. (9),
Eqn. (12) can also be got.

Or when i
immediate profit,

More generally, since

o ()l = g(z) and

o= el seeaz) = (a0 B

a
applying ﬂ’lg and g_g to Eqn. 6, and letting A=
0, then
[O (G- o LB

I
g(z)]e—i(zl—z,) -0
From this equation, Eqn. (12) is got. This
indicates the consistency of the new method with
the traditional method based on marginal analysis
in terms of the two extreme operating points.

4 A CALCULATION EXAMPLE

From a hypothetical metal mine, the fol-
lowing data are obtained:

Qo= 40x 101, Q= 1.5% 10/ a,

Fo=19.5% 10° Yuan/ a,

K= 6,000 Yuan/t

m= 11 Yuan/t, ¢= 11 Yuan/t,

& 95%

The distribution density is supposed to be
exponential, with a= 1.2 and b= 300.

Applying these data to Eqn. (9), (10) and
(11), then

| 5700 % 1000 L2

T = 30033006 O - 0 4 300 AT 300
(13)

57006
33009‘0“1+ 30())\_ 0.06 (14)
and
A’ —

IH_L]J—ne-“M L= L4 (15)

The solution of Eqns. (14) and (15) yields:
t1= 19.35 and A= 1. Applying the solution of

t1 and Ato Eqn. 13, it is obtained

* 1 5700& O 1(19-35 ¢) L2
"= 300 33006 ¢ 104 300" 300
(16)
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Letting t= 0, 1, .., 19.35, from Eqn.
(16) with a discount rate of 10%, the obtained
solution results of optimum cut-off grade are as
shown in Table 1.

Table 1 shows that the mine life of 19.35a

Table I Optimum cut off grade and
relating variables

! /q(’;c P /% f ) f)
/10%  /10%

0 0.419 0.943 0.752 1.59 1.59
1 0.432 0908 0.762 I.65 3.24
2 0.444 0.876  0.777 .71 4.95
3 0.455 0.848 0.788 1.76 6.71
4 0.465 0.823 0.798 1.82 8.53
5 0.474  0.801 0. 807 1.87 10. 40
6 0.483 0.780 0.816 1.92 12.32
7 0.492  0.759 0.825 1.97 14.29
8 0.499 0.743 0.832 2.0l 16. 30
9 0.506 0.728 0.839 2.06 18.36
10 0.513 0.712 0.846 2.10 20. 46
11 0.519 0.700 0.852 2.14 22.60
12 0.524 0.689 0.857 2.17 24.77
13 0.529 0.679 0.862 2.20 26.97
14 0.534 0.669 0.867 2.24 29.21
I5 0.538 0.661 0.871 2.26 31.47
16 0.532 0.653 0.875 2.29 33.76
17 0.546 0.645 0.879 2.32 36. 08
I8 0.549 0.640 0.882 2.34 38.42
19 0.552 0.634 0.885 2.36 40.78
19.35 0.553 0.632 0.886 (.82 41. 60

needs 41. 6 x 10°t of mineralized material, which
exceeds the constraint of 40 x 10°%. Therefore
the practical mine life is 18+ (40. 78— 40)/2.36
= 18. 67. Slight difference exists between 18. 67
a mine life in Table 1 and that obtained from
Eqns. (14) and (15) which is 19.35a. This is
because the model demands a continuous change
of cut-off grade while in practice only annual ad-
justment is carried out. As a calculation experr-
ment, if a semrannual adjustment is implement-
ed, the mine life extends to 19. la, which is
much closer to the optimum one. The annual (or
semrannual) change in cut-off grade can be seen
as a second best policy for a mine.
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