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ABSTRACT A neural network modeling to assess rockburst risks for deep gold mines in South Africa has
been described. About 200 cases of rockbursts from a database were used to train the neural network. The re-
sults from the test cases of VCR and Carbon Leader mining, for both stopes and tunnels, were presented. It
was shown that, although it has the potential to assess rockburst risks, the proposed empirical approach is still
highly dependent on the accuracy of the case records collected and the way the database is structured. Within

the confines of the database used, various quantitative and qualitative features affecting rockbursts were identi-
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fied and their integration of an expert system and neural networks was proposed.
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1 INTRODUCTION

The problem of mining-induced seismic
events (rockbursts) has been a common feature
of deep gold mines in South Africa''. This
problem has been critical at greater depths, par
ticularly when the mining ore body is associated
with faults, dykes and pegmatites. Many a time
area rockbursts have caused fatalities and exten-
sive damage to the surface and underground mine
structures. The area rockburst is generally influ-
enced directly by tectonic stresses, geological
discontinuities and indirectly by mining activi
ties. Though many efforts have been made by
researchers to understand the causes, and to pre-
dict the occurrence of these area rockbursts, the
success achieved has been limited. This is partly
due to the complex nature of rock mass and the
complex physical process of rockbursts. Uncer
tainties exist in geological data and in properties

of rock masses, some geological data may be
missing, the rock mass properties must be esti-
mated from theoretical procedures or large field
tests, therefore, a perfect set of input data for
prediction was seldom given to the modelers. In
such circumstances, the experience of similar
mining in similar geological conditions and the
expertise of experienced geomechanical engineers
have invaluable values for drawing the best pre-
dictions from insufficient and uncertain data.
Current methods focusing on looking for exact
mathematical descriptions or only on local mag-
nitude often result in unsatisfying results. In
such cases the ability of artificial neural network
of coping with incomplete information further
encourages us to explore the extrapolating ability
of rockburst risk assessment for deep gold mines
in South Africal*™ .

The artificial neural network is a new
branch of intelligence science and has developed
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[5=81 " The artificial neu

rapidly since the 1980s
ral network is an information processing system
emulating the structure and functions of human
brain. It consists of numerous simple processing
elements connected together (see Fig. 1) accord-
ing to certain rules and is able to response dy-
namically to an outside stimulus and process in-
the struc

ture and processing sequence of the artificial net-

formation. As for the human brain,

work are parallel. The artificial neural network
has a very strong learning ability and can adapt
itself to the outside environment by learning. In
an artificial neural network, knowledge is not
stored in some specific memories but distributed
in the whole system. In order to store knowl-
edge there must be numerous connections. The
artificial neural network can learn from incom-
plete and inaccurate data, even with considerable
noise, and has a very robust of errortolerance.
The artificial
trained, can give an approximately optimal solu-

neural network, if properly

tion from limited and distorted information.
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Fig. 1 Structure of network for

rockburst assessment

In this paper a neural network modeling on
rockburst risk assessment is proposed. Assess
ment of rockburst risks in stope faces with Car-
bon Leader reef mining and VCR reef mining as
well as in tunnels in general were modeled re
spectively. Several historical cases were used to

test the model and system. The results obtained
are interesting.

2 ESTABLISHMENT OF NONLINEAR
MODEL FOR ROCKBURST RISK AS
SESSMENT

Suppose a data set of history case (x,,

yo)(p =1, 2, - N) for rockbursts as
Xy = (x[)17 Xp2,  oon x/}n)

y/) = (y/) 1s y/) 25 s y/) m)

where  x,; 1s the ith factor causing rockbursts,
i= 1, 2, .., n; v, is the jth index indicating
rockburst risk assessment, j = 1, 2, ..., m.

According to engineering experience, the
factors affecting rockbursts in South African gold
mines can be considered depending on different
reefs ( Carbon Leader reef, VCR reef, Vaal
reef, Main reef, Basal reef, Kloof reef, Com-
posite reef, etc.) and engineering types ( stope
face, gully, tunnel). For example, for stope
face with Carbon Leader reef mining or VCR
reef mining the factors such as depth below sur-
face, dip, structure type, mining method, stope
width,
support and temporary support were determined

Rock-

strike span, permanent support, region
by statistical analysis of rockburst cases.
burst risks may be assessed by percentage.
Modeling on rockburst risk assessment is to
establish a relationship between y, and x, as
G:R"~ R"
Yp = G(xll) (p = 19 29 Tty N) (1)
Generally, the relationship G is nonlinear.
Instead of mathematical equation, a parallel dis-
tribution representation was used for the rela
tionship G. In this new representation, let y, =
(Yp1s ¥po2
put nodes and x, = (x,1, x,2,

5 ¥,m) be represented by the out-
sy X,n) be rep
resented by the input nodes to construct a multr
layer feedforward neural network shown in Fig-
ure 1. There may be one or more hidden layer
(s) between the input layer and the output layer
in order to represent a complex nonlinear map-
ping of rockburst risks. According to Hertz et
al’ | the network with two hidden layers is e
nough to represent nonlinear relationship of

problems. The prediction errors of the networks
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with different numbers of hidden layers ( from 1
to 7 hidden layers) were also compared in exper-
iment of rockburst risk assessment. The results
also indicate that the network with two hidden
layers is the best for the study in this paper. The
node threshold function is sigmoidal, as

flx)= o= 2)

The nonlinear rockburst risk assessment
represented by Eqn. (1) is recognized by using
machine learning performed on neural network.
A training sample data set is used to train the
multilayer feedforw ard neural network to obtain
a nonlinear model, which is very approximated
to the actual G. Thus, the nonlinear rockburst
model can be represented by

B = S (OSW o [ (2W,
SOEWaxy+ 6)+ 8)+ 6) (3)

A N

where %, is computing output for the ith varr
able of the p th learning sample, x,; is data of the
ith input parameters of the p th sample. If x,; is
descripted qualitatively, it needs to be trans-
formed into numerical value by using the con-
structed different rules.

The connection weights W,;, W,,, W, and
thresholds 6,, 0,, © are determined automatical-
ly by using machine learning. Thus, the nonlin-
ear representation of Eqn. (1) will be obtained.
An extrapolating estimation algorithm'™ ' is
used to perform this learning.

3 ASSESSING ROCKBURST RISKS BY US
ING HISTORICAL CASES

3.1 Assessing rockburst risks in stope faces
with Carbon Leader reef mining
Rockburst risks at stope face with Carbon
Leader reef mining were assessed firstly. A his-
tory case data set for rockburst events occurred
was collected from a rockburst database that was

established by CSIR Mining Technology ( see

4

Fig. 2) . In each column in Fig. 2, an “x” is used

to mark the presence of a particular feature of
the case record. If a feature is absent a “.” is
used as appropriate. There are 32 features for
each record that is derived from the descriptions

used in the rockburst database. Each pattern is

presented as a vector in a 32-dimensional space
consisting of 1s and Os in which “x” corresponds
to 1, “
that each node contains only 1s or Os - the node

corresponds to 0. It is not required

may contain any number among 1 and 0. Each
node represents one feature shown in Fig. 2.

The 72 patterns ( the first 72 cases shown in
Fig.2) were random selected for model recognr
tion and other 7 patterns (the last 7 cases shown
in Fig. 2) were used to test the accuracy of the
learned model. A multilayer feedforward neural
network was trained to obtain nonlinear model
for rockburst risk assessment. Many of network
configurations were tested for this nonlinear esti-
mation. The number of nodes in the Ist and 2nd
hidden layer was estimated from 1 to 100 respec
tively. The best topology of the network was 32
765 1, this is, 32 nodes for the input layer,
65 nodes for hidden layer and 1 nodes for the
output layer (See Fig. 1).

During the model learning, the different
learning parameters Iland a were taken from 0. 1
to 0. 95 at 0. 05 interval respectively. The best
parameters were 1= 0.1, a= 0. 1 for the given
training sample set and the network. The deter
mined network needs 2001 learning iterations to
obtain the best extrapolating outputs of rock-
burst risk assessment. Rockburst risks of 7 new
cases were assessed as 0. 0%, 0. 0%, 98. 6%,
0.1%, 0.0%, 0.0%, 0.0% respectively. In
fact, only the case 75 shown in Fig. 2 did occur
rockburst.

Another experiment was carried out to test
the capability of the system to find main features
of rockbursts. In this experiment, the features
of the case 78 are used as the cues. However,
instead of the actual cues of permanent support
“backfill” with “ backfill + hydraulic props”,
“hydraulic props” or “packs” respectively, and
instead of the cues of region support “backfill+

[4 9

stabilizing pillar 7 with “ stabilizing pillar”,
“backfill” or

risks are all assessed with 0. 0% . If the cue of

“none” respectively, rockburst
permanent support “ backfill” is replaced by
“packs”, and the cue of region support “backfill
+ stabilizing pillar” is replaced by “none”, the
cue of temporary support “ hydraulic props” is re-
placed by “none”, respectively, rockburst risk is
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then assessed with 24. 2% . If the cue of perma-
nent support “ backfill” is replaced by “packs”,
the cue of region support “backfill+ stabilizing
pillar” is replaced by “none”, the cue of tempo-
rary support “hydraulic props” is replaced by
“none”, and the cue of strike span “ 100~ 200
m” is replaced by “> 200m”, respectively, rock-
burst risk is thus increased to 96. 7% . If the cue
of temporary support “hydraulic props” is kept,
even though the cue of strike span is taken as
“>200m”, “100~ 200m” or “< 100m” respec
tively, it would be no rockburst risk for the case

78.

3.2 Assessing rockburst risks in stope faces
with VCR reef mining

A history case data set for rockburst events
occurred at stopes with VCR reef mining was
collected from a rockburst database that was es
tablished by CSIR Mining Technology. The 100
samples were randomly selected for model recog-
nition and another 4 samples were used to test
the accuracy of the learned model.

As for the previous experiment, many neu-
ral network architectures were tested and the
best topology was 32765 1. The learning pa-
rameters were both taken as 0. 1. According to
the minimum-error principle of extrapolated as
sessments, the model output for the best assess
ment of rockburst risks of the 4 new cases were
3.9%, 88.8%, 97.6%, 100. 0% respectively.
In fact, the cases 102, 103 and 104 did occur

rockbursts.

3.3 Assessing rockburst risks in tunnels for
gold mines in general

The 60 history cases of rockburst events oc-
curred at tunnels for gold mines in general were
collected from a rockburst database that was es
tablished by CSIR Mining Technology. The 56
samples were random selected for model recognr
tion and other 4 samples were used to test the
accuracy of the learned model.

Once again, many neural network architec
tures were tested and the best topology of the
network was 20 30" 1. Input nodes were rep-
resented by factors, such as depth below sur-
excavation

face, structure, excavation width,

height and permanent support, with various

ranges. The learning parameters were taken as Tl
= 0.05, a= 0.1. The model was obtained by
training the network at 100 iterations of learn-
ing. Rockburst risks of the 4 new cases were as
sessed as 99. 7%, 0. 0%, 98. 5%, 0. 0% re
spectively. In fact, rockburst did occur at the
57th and the 59th cases.

In order to test the capability of the system
to find main features of rockbursts another ex-
periment was also done. In this experiment, the
features of the case 57 are used as the cues.
However, instead of the actual cues of depth be
low surface “= 1225~ 2250 m” and structure
type “dyke”, the depth below surface “> 2250

2

m” and the structure type “none 7 were used.

Then the risk of rockburst was assessed as
“33.1%”. If the depth below surface “> 2250
m” was kept, and the structure type “fault” was
used, the risk of rockburst rises to “99.9%”.
Instead of the actual cues of depth below surface
“= 1225~ 2250 m”, and the depth below sur-
face “= 800~ 1250 m” was used, then the risk
of rockburst was assessed only “62. 2%”. In-
stead of the actual cues of depth below surface
“= 1225~ 2250 m,” the depth below surface
“< 800m” was used, then the risk of rockburst
reduces to “0.0%”. Instead of the actual cues of
depth below surface “= 1225~ 2250 m” and
structure type “dyke” the depth below surface
“= 800~ 1250 m”, the structure type “none ”
or “ fault” were used, then the risk of rockburst
were assessed as “0. 2% ,” and “59. 5%”, re
spectively.

4 CASE STUDIES

4.1 Case 1

In Western Deep Levels West Mine, Car
bon Leader reef were mined with longwall
method. Stope width was 0. 9 m, strike span
was 24 m. The geological structure is dyke and
joints parallel to dyke. Dip was 20° and dip span
was 270m. The field stress was 72M Pa. Hang-
ingw all rock was dyke with the UCS of greater
than 300 MPa, footwall rock was dyke with
UCS greater than 300 MPa. Permanent support

[4

was “packs”, regional support was “backfill +
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stabilizing pillar”, no temporary support was
adopted.

The neural network model assessed rock-
burst risk in this mining area was 99. 9% . On
the another way, the developed expert system by
authors gave its assessment that rockburst would
be “high”. In fact, a big rockburst did occur in
this mining area ( Hypocenter X: 28726,
Hypocenter Y: — 38619, Hypocenter Z: 3180)
at 9: 33 PM, February 11, 1994. The width of
fall was 2. 4 m, height of fall was 0. 8§ m and
lengths of fall was 0. 8 m. The local magnitude
was 1.72

4.2 Case 2
Composite reef mining was carried out with
K# . Stope

width was 0. 9m, strike span was 200 m, geo-

Longwall method in Er pm G. M.

logical structure was dyke, dip was 19° and dip
span was 240 m. Hangingwall rock was
Quartzite with UCS 180MPa, footwall rock was
M araishburg formation with UCS 235M Pa. Field
stress was 141 MPa. Permanent support was 1.
Im by 1. 1 m solid timber packs+ pipesticks,
stabilizing pillar was used as regional support, 3
rows of hydraulic props with 1 m of spacing were
used as temporary support.

The neural network model assessed rock-
burst risk in this mining area was 96. 6% . The
developed expert system assessed that rockburst
would be “severe”. In fact, a severe rockburst
did occur in this mining area at September 23,
1993 12: 40 PM. The width of fall was 10 m,
height of fall was 0. 7m and length of fall was 50

m.
5 CONCLUSIONS

In light of discussion above the following
conclusions can be drawn:

(1) It is sometimes complicated for tradr
tional analysis methods to assess rockburst risks.
Generally, it needs experiential data to deter
mine calculation parameters. The proposed self-
learning based and adaptive modeling method in
this paper can overcome some of these problems.
In which, the final nonlinear assessment model
for rockburst risks is recognized by the artificial

neural network itself from learning the history
cases of rockburst and expressed in the parallel
distribution of information in the nodes of the ar-
tificial neural network. So long as history
records of rockburst data are available, neural
network model can grasp knowledge of assessing
rockburst risks by learning and then gives good
extrapolated estimation.

(2) An improved back propagation algo-
rithm was proposed in order to improve the abilr
ty of neural network to extrapolate assessment of
rockburst. The minimum square error sum of
rockburst risk assessment for new samples that
are not used to train the network were used to
judge whether the model recognition procedure
ends or not. Therefore, some problems such as
the local minimum and excessive training that
the traditional methods have can be overcome.

(3) Stope faces with Carbon Leader reef
mining and VCR reef mining were modeled.
The 79 Carbon Leader reef mining cases and 104
VCR reef mining cases have been collected.
Some cases were used to train the network to ob-
tain nonlinear model of rockburst risk assess
ment. Within the confines of the database used,
various quantitative and qualitative features af-
fecting rockbursts were identified. These fea
tures are depth below surface, dip, structure
type, mining method, stope width, strike span,
permanent support, regional support and tempo-
rary support.

(4) Also, tunnels (airway, roadway, and
haulage) for gold mines in general were mod-
eled. 60 cases have been collected from a rock-
burst database. The affecting factors such as
depth  below

width, excavation height and permanent support

surface, structure, excavation
were also identified within the confines of the
database used.

(5) Besides affecting factors mentioned
above, energy release rate (ERR), excess shear
stress ( ESS), structure number, distance from
structure, face angle with structure, support re-
sistance, stope close rate and virgin stress ratio
and rock strength have contributed to rock-
bursts. So, in this case, an expert system was
constructed to assess the possibility of rock-
bursts. The expert system included about 950
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rules, some important parameters, such as
ERR, ESS, ete, were included in rules. The
expert system and neural network models were
integrated into an intelligent assessment system
to make extrapolating assessment of rockburst
risks. It is shown from the results of rockburst
risk assessment of some new cases that accuracy

of models is high.
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