
 

 

 

Trans. Nonferrous Met. Soc. China 30(2020) 559−570 

 
Phase field lattice Boltzmann model for non-dendritic structure formation 

in aluminum alloy from LSPSF machine 
 

An-shan YU1,2, Xiang-jie YANG1,2, Hong-min GUO2,3 
 

1. School of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China; 

2. Key Laboratory of Near Net Forming in Jiangxi Province, Nanchang 330031, China; 

3. School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China 
 

Received 23 May 2019; accepted 23 December 2019 
                                                                                                  

 
Abstract: The formation of non-dendritic structures in the primary phase of an aluminum alloy solidified using low 
superheat pouring with a shearing field (LSPSF) machine was investigated by numerical simulation. The growth and 
motion of a dendrite during solidification was simulated by a combination of the lattice Boltzmann method and the 
phase field method. The simulation results indicated that enough shear flow helped homogenize the concentration  
fields, rotate crystals and altere microstructures from dendritic to non-dendritic. The interaction of grains was also 
discussed. A fragmentation criterion was established based on partial remelting of dendrite arms; fragmentation was 
enhanced by a strong shear flow and larger inclined angles. The simulation results were verified experimentally. 
Key words: numerical simulation; non-dendritic structure; low superheat pouring with shearing field (LSPSF); 
aluminum alloy; phase field method; lattice Boltzmann method 
                                                                                                             

 
 

1 Introduction 
 

Semisolid forming is a way for near net 
forming of wrought alloys due to the existence of 
non-dendritic solidification structures in semisolid 
slurry which effectively reduce or eliminate 
solidification shrinkage [1]. Therefore, efforts to 
understand non-dendritic structure formation under 
an external field have been made. Non-dendritic 
structure formation is a complex process which 
includes fluid flow, heat and mass transfer, complex 
coupling processes as well as crystal motion. These 
processes have significant research interest as well 
as industrial applications [2]. In the solidification 
process of low superheat pouring with a shearing 
field (LSPSF) [3], melt convection is primarily 
induced by rotation, pouring, density differences 

among different components, or temperature 
differences among different regions. Melt 
convection plays a key role in non-dendritic crystal 
growth, including low undercooling and increased 
nucleation. Grain movement in the melt 
significantly impacts the solidification process of an 
alloy; that movement also impacts microstructure 
and composition distribution during casting [4]. 
However, some of these mechanisms are still not 
very clear. For example, the mechanism of nucleus 
detachment and grain motion has limitations 
because direct observation of convection and 
motion during solidification is difficult; however, 
numerical modeling and simulation offer effective 
ways for studying such behavior. 

Over the past 20 years, numerous solidification 
models have been developed for microscale analysis, 
such as phase field [5], cellular automata [6], 
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enthalpy [7] and level-set [8] methods. These 
models deal with the effect of the diffusive 
environment on dendrite growth and help explain 
heat and solute transport at the solid−liquid 
interface as well as understand factors that control 
the stability and shape of the dendrite tip [9]. 
Recent models have incorporated the effect of melt 
flow on dendrite growth. For example, large scale 
simulations have been carried out by coupling 
cellular automata using the lattice Boltzmann [10] 
and the phase field with the lattice Boltzmann 
method [11−13]. However, dendrite motion has 
been ignored in most models. To overcome this 
oversight, rigid body motion and rotation has been 
introduced in the growth of dendrites in alloys. LIU 
et al [14] used cellular automata−lattice Boltzmann 
to simulate the growth and motion of the equiaxed 
dendrites. MEDVEDEV et al [15] simulated a 
single dendrite solidification with motion and 
rotation with the phase field and lattice Boltzmann 
methods. ROJAS et al [2] and TAKAKI et al [16] 
used the phase field lattice Boltzmann method to 
simulate the growth and movement of a binary alloy. 
KARAGADDE et al [9] used a coupled volume of 
fluid (VOF)−immersed boundary method (IBM)− 
enthalpy method to simulate the growth and motion 
of equiaxed dendrites. TAKAKI et al [16] used a 
phase-field model coupled with Navier−Stokes 
equations to simulate dendritic growth and motion. 
Due to the accuracy of the phase field method and 
the easy parallel computation of the lattice 
Boltzmann method, we chose to use the phase field 
lattice Boltzmann method to simulate dendritic 
growth and motion. 

Very few works have been published covering 
mesoscopic simulation of microstructure evolution 
during LSPSF rheoprocessing of Al alloys. The 
present study was focused on the investigation of 
non-dendritic structure formations of an aluminum 
alloy using LSPSF. The phase field lattice 
Boltzmann model was used initially to simulate 
dendritic growth and motion under rotation and 
gravity. The mechanism of non-dendritic structure 
formation based on simulation results is then 
discussed. Finally, the simulation results were 
verified experimentally. 
 
2 Model description 
 

The phase field lattice Boltzmann method 

originates from a combination of the quantitative 
phase field model for alloy solidification and the 
lattice Boltzmann method for fluid flow. For the 
quantitative phase field model, computing dendritic 
growth by treating the interface thickness is 
appropriate and the lattice Boltzmann method 
readily simulates fluid flow. For simplicity, the 
solid is assumed to be a rigid body and the net force 
exerted on the solid by fluid flow and other fields 
induces dendrite motion. 
 
2.1 Phase field method 

KARMA [17] and ECHEBARRIA et al [18] 
proposed the phase field model for alloy 
solidification. In this model, the phase field 
parameter φ indicates the phase distribution: +1 for 
solid and −1 for liquid. The time evolution of φ is 
given by 
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where τ(θ) represents the u-dependent phase field 
relaxation time, θ is the angle between the direction 
normal to the interface and a reference axis, k is the 
partition coefficient, φ is the phase field parameter, 
ζ is the noise term, λ is a dimensionless coupling 
constant that controls the coupling between the 
phase field and the concentration field, W(θ) is the 
interface thickness, W′(θ) denotes the derivative of 
W(θ) with respect to θ, u is the non-dimensional 
super-saturation, and θsys refers to non-dimensional 
temperature and W(θ)=W0ꞏα(θ), τ(θ)=τ0ꞏα

2(θ). The 
anisotropic function was set to be α(θ)=1+ 
ε4cos(4(θ+β0)), where ε4 is the anisotropic strength 
and β0 is the orientation of the nucleus. For this 
simulation, ε4=0.04, W0=d0ꞏλ/α1, τ0=α2ꞏλꞏW0

2/D, 
where α1= 0.8829, α2=0.6267 and d0 is the chemical 
capillary length. To mimic system solute 
fluctuations, a single noise term ζ was introduced in 
Eq. (1) and realized using a Gaussian random 
number (zero mean) with specific amplitude (10–3). 
Incorporating flow, the change of u as a function of 
time is expressed as 
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The non-dimensional, super-saturation u and 
the anti-trapping JAT are defined as 
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where k=c∞/cl

0, D(=Dlτ0/W0
2) is the dimensionless 

diffusion coefficient in a liquid; k is the partition 
coefficient; c∞ and cl

0 are the mean concentration 
and the solid−liquid interface concentration, 
respectively. 
 
2.2 Lattice Boltzmann method (LBM) 

The lattice Boltzmann method was used to 
calculate the fluid velocity to simulate fluid flow. In 
the two-dimensional nine velocity (D2Q9) model 
used here, the evolution of a single relaxation time τ 
and the discrete forcing term Gi in the lattice 
Boltzmann method are expressed as 
 
fi(x+ciδt, t+δt)=fi(x+t)− 

eq1
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where fi is the fluid distribution function for a 
particle moving with a discrete velocity ci at time t 
and at position x. 

The discrete velocity set {ci|i=0, 1, …, 8} in 
the D2Q9 model is 
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where c=δx/δt is the lattice speed, δx is the lattice 
cell width and δt is the time step. To match Δx and 
Δt from the phase field method, it was necessary to 
rescale δx and δt to 1 in LBM computations. The 
density ρ and velocity U of the fluid were 
determined by 
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The equilibrium distribution function fi

eq was 
defined using the fluid density and velocity as 
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The weighting factor, wi, differs as a function 
of i, w0=4/9, w1−4=1/9, w5−8=1/36 and the fluid 
viscosity is calculated by v=(τ−1/2)δtꞏc2/3. Tracking 
the exact interface position and implementing a 
non-slip boundary condition was more challenging 
than using sharp interface models. Considering this, 
the no-slip condition between the melt and the solid 
was realized via drag resistivity in the diffuse 
interface region. To satisfy the no-slip condition in 
the vicinity of the liquid−solid interface, the 
external force, G, was calculated as a second-order 
function using the equation below [19]: 
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where h* is a dimensionless constant (h*=2.757), W0 
is related to the interface thickness and Us is the 
solid velocity. 
 
2.3 Solid motion 

According to Newtonian law, calculation of 
particle motion utilizes the following equations and 
an updated phase field, φ, by solving the advection 
equation [20,21]: 
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Us=UT+ωs×(x−Xs)                       (16) 
 

s 0
t
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U                           (17) 

 
where Ms and Is are the mass and inertial tensors of 
the solid, Gs and Ts are the total force and torque 
acting on the solid, UT and ωs are the translational 
and angular velocities of the solid, ΔV and Ω are the 
volume of the computational lattice and the domain 
in the vicinity of the solid interface, ρl and ρs 
correspond to liquid and solid densities, 
respectively, g is the gravity constant and Xs is the 
center of mass of the solid. 

The basic solution of the present model was 
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obtained as follows: 
(1) Solve Eqs. (1)−(4) using the finite volume 

method. 
(2) Solve the lattice Boltzmann equation and 

satisfy the no-slip boundary condition using    
Eqs. (5)−(11). 

(3) Obtain Us using Eqs. (12)−(16) and update 
the phase field location with Eq. (17). The 
advection equation was discretized with the WENO 
fifth-order scheme in space and the Runge−Kutta 
third-order scheme in time. 

(4) The program was written using C++; data 
analysis and visualization were completed in 
MATLAB. 
 
3 Experimental  
 

In this study, aluminum alloy 6063 was used as 
the experimental material with an elemental 
composition of 0.68% Mg, 0.52% Si and 0.14% Fe, 
with the balance being aluminum. The liquid and 
solid temperatures of the alloy were 658 and 618 °C, 
respectively. In the experimental procedures, a 
LSPSF process was used to obtain the non-dendritic, 
α(Al) phase. The experimental equipment is shown 
in Fig. 1 and a detailed description of the LSPSF 
process and associated equipment can be found 
elsewhere [3]. The experimental parameters are 
given in Table 1. The alloy was initially melted in a 
clay-graphite crucible at 720 °C; when the melt 
reached a preset temperature, approximately 1.5 kg 
of the melt was poured into a rotating barrel at 
room temperature. The melt was collected in an 
accumulator at 650 °C. At the same time, sample 
slices were cooled rapidly with water for 15 s, 
properly polished and chemically etched with a 
10% aqueous NaOH solution. Microstructures were 
observed using an optical microscope. 
 

 

Fig. 1 Schematic illustration of LSPSF device used in 

experimental procedure 

Table 1 Parameters used in LSPSF process 

Pouring 

temperature/°C

Rotative velocity, 

ω/(radꞏs−1) 

Inclined 

angle, θb/(°)

670 1, 1.25, 1.5, 1.75, 2 15, 20, 25 

 

4 Results and discussion 
 

The motion and growth of grains in a binary 
alloy during solidification were established. An 
Al−Mg aluminum alloy system was selected for 
simulations, and its physical properties are listed in 
Table 2. All numerical simulations were dimension- 
less with Δx/W0=0.4 and Δx=4.44×10−8 m, while the 
time step was Δt=7.0×10−8 s. The lengths and 
widths of the simulated domain were Lx =Ly=800Δx 
in the x and y directions. The initial diameter of the 
seed was D=10Δx. The dimensionless coupling 
parameter was λ=5.5. The density ratio, ρs/ρl, was 
1.05 with gravity acting along the y axis. The 
non-dimensional super- saturation was u=−0.65. 
For isothermal conditions, θsys=0 since the use of 
the actual kinematic viscosity would be unrealistic 
to perform the simulation in a reasonable 
computation time. The relaxation time in the LBM, 
τ, was set to be 0.575. The computation was 
performed for 3×104 steps. The boundary 
conditions for φ and u were set as the zero 
Neumann condition for all boundaries. The 
non-equilibrium extrapolation scheme was adopted 
for the flow field boundary conditions and a no-slip 
boundary condition was applied to the solid 
boundary. 
 
Table 2 Physical properties of Al−Mg aluminum    

alloy [22,23] 

Parameter Value 

Initial mass fraction of alloy, c0/% 0.68 

Liquidus temperature, Tl,eq/K 933.47

Solute partition coefficient, k 0.32 

Liquidus slope, kl/(Kꞏ%−1) −5.07 

Solute diffusion coefficient  

in liquid, Dl/(m
2ꞏs−1) 

3.0×10−9

Gibbs−Thompson’s coefficient, Γ/(Kꞏm) 1.3×10−7

Density, ρ/(kgꞏm−3) 2.36×103

 

4.1 Effects of rotative velocity on microstructure 
morphology 

To investigate the influence of rotative velocity 
on dendritic growth and solute distribution, we 
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considered four different rotative velocities (ω): 0, 
10, 20 and 40 rad/s. Initially, a solid seed was 
placed in the melt and a constant flow, ω, in a 
circumferential direction was applied on a radial 
axis from the domain center towards the outside. 
The boundary conditions for φ and u were set as the 
zero Neumann conditions for all boundaries. For 
the flow field, a no-slip condition was applied to the 
solid boundary. A non-equilibrium extrapolation 
scheme was adopted to treat the open boundary 
conditions. 

Morphological changes and variations in the 
concentration fields are shown in Figs. 2 and 3. As 
the rotative velocity increased, the area of the 
dendrite decreased and the length of the dendrite 
arms became shorter. The dendrite tip interface 
concentration increased while the dendrite root 
interface decreased. As the rotative velocity 

increased, more solute was drawn from root      
to tip, which resulted in a more homogeneous 
concentration. Figure 3(a) indicates that larger 
rotative velocities corresponded to a wider distance 
between the tip interface and the bulk melt (δ). For 
diffusion-limited growth of a dendrite tip, the tip 
velocity (R) [24] satisfied R=Dl/δ, where Dl 
corresponds to the diffusion coefficient. This 
implied that the tip velocity of the dendrite 
decreased as the rotative velocity increased;     
Fig. 3(b) also shows that the dendrite root interface 
concentration decreased as the rotative velocity 
increased. Thus, the dendritic arm roots grew faster 
and promoted stable non-dendritic structure growth. 
Therefore, the rotative shear flow effectively 
decreased the segregation in practice, while a 
non-dendritic structure phase was obtained using 
higher rotative velocities. 

 

 
Fig. 2 Concentration distribution during dendritic growth at different rotative velocities: (a) 0 rad/s; (b) 10 rad/s;     

(c) 20 rad/s; (d) 40 rad/s 
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4.2 Effects of inclined angle on microstructure 

morphology 
Different inclined angles (θb) were used to 

investigate the effect of incline angle on 
solidification microstructures. These different 
angles corresponded to different settling 
accelerations (SA), given by SA=gsin θb (g is the 
gravity constant; SA=2.539, 3.355 and 4.146 m/s2). 
The morphological changes and the concentration 
field variations are shown in Figs. 4 and 5. As the 
settling acceleration increased and the dendrite fell, 
the four-fold growth was asymmetric. The 
downward directional growth velocity of the 
dendrite increased while high concentrations 
suppressed the upward direction growth velocity. 
The two parts of the left and right grew 
asymmetrically; therefore, slight dendrite rotation 
occurred. From Fig. 5, the solute released from the 
downward tip diffused rapidly; diffusion of side 
arms tip is the second and the diffusion of the 
upward tip was slow under the effect of the flow 
field. This led to a thin boundary layer at the end of 

the flow current and the thickness of the boundary 
layer at the back of the flow as well as asymmetry 
of dendrite growth. Figure 6 shows the settling 
velocity, Vs and the angular velocity of the dendrite, 
ωs. The effect of gravity increased as the dendrite 
grew; therefore, the settling velocity and resistance 
of this dendrite also increased. As the resistance and 
gravity reached equilibrium, the settling velocity of 
the dendrite stabilized; a larger settling acceleration 
contributed to forced flow, which then induced a 
small angular velocity of the dendrite, as shown in 
Fig. 6(b). Since the angular velocity of the dendrite 
was small, this weakened the solute distribution; 
therefore, solute distribution was altered primarily 
by settling acceleration. 

The solutions above assumed an initial 
dendrite nucleus orientation of β0=0 rad. That is to 
say, one of the preferred growth axes of the dendrite 
occurred in the settling acceleration direction that 
resulted in a stable settling. That explains lower 
dendrite rotation in this case. The next simulation 
initially set β0=0.785 rad; the non-zero growth  

 

 
Fig. 3 Interface concentrations of tip (a) and root (b) 

 

 

Fig. 4 Concentration distribution during dendrite growth under different settling accelerations, SA, at initial dendrite 

nucleus orientation of β0=0 rad: (a) 2.539 m/s2; (b) 3.355 m/s2; (c) 4.146 m/s2 
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Fig. 5 Tip concentrations of downward (a), left (b) and 

upward (c) arms 

 

orientation of the dendritic branches resulted in 
asymmetric growth (Fig. 7). Conclusions from 
other groups [25] suggested that different velocities 
of the growing branches depended on the local flow 
surrounding each tip. When the shape of the 
dendrite became asymmetrical, it readily rotated in 
search of other stable orientations. The evolution of 
the settling velocity and angular velocity of the 
dendrite falling at different settling accelerations  

 

 
Fig. 6 Variations of settling velocity, Vs (a) and angular 
velocity, ωs (b), for three different settling accelerations 
at initial dendrite nucleus orientation of β0=0 rad 
 
is shown in Fig. 8. Figures 6 and 8 demonstrate that 
when SA=4.146 m/s2, the angular velocity of the 
dendrite (at β0=0.785 rad) was four times faster than 
for β0=0 rad and nearly twice as fast when SA= 
2.539 m/s2. This indicated the larger settling 
acceleration and orientation of the dendrite in space 
both induced dendrite rotation. Thus, the orientation 
of the dendrite in space and melt flow codetermine 
dendrite shape and growth direction. 
 

4.3 Grain interactions 
To investigate the interaction effect of different 

grains on their morphology and growth kinetics, a 
calculation domain with five seeds was used and 
the results are shown in Fig. 9. The simulation only 
included overlapping of the solute diffusion, and 
others were ignored. The Mg concentration gradient 
in the liquid rapidly dropped due to diffusion layer 
overlap around the grains (Fig. 9(b)). As a result, 
dendritic tip growth was inhibited. While larger Mg 
concentration variations were observed in the liquid 
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Fig. 7 Concentration distribution during dendrite growth under different settling accelerations, SA, at initial dendrite 

nucleus orientation of β0=0.785 rad: (a) 2.539 m/s2; (b) 3.355 m/s2; (c) 4.146 m/s2  

 

 
Fig. 8 Variations of settling velocity, Vs (a), and angular velocity, ωs (b), for three different settling accelerations at initial 

dendrite nucleus orientation of β0=0.785 rad 

 

 

Fig. 9 Effects of grain interactions on growth morphologies and Mg concentration field around grains (a), and Mg 

concentration distribution curves in melt ahead of solid−liquid interface of Grain 1 (b) and Grain 2 (c) 

 

(Fig. 9(c)), this situation led to a destabilization of 
the solid–liquid interface and a free dendritic arm 
morphology. Figure 9(a) shows few secondary arms 
due to the overlap of diffusion layers around the 
grains. Therefore, overlapping of the solute diffusion 
layers around the grains opposed the applied 
driving force [24,26], which is, in practice, reduced 
to the dendrite tip effective undercooling. The 

interface stability and the interface energy were also 
enhanced; the solute distribution over the solid− 
liquid interface was more uniform and the dendrite 
tip growth was inhibited. The growth rates of root 
and side of dendrite arms were improved; therefore, 
preferential growth of grains was strongly inhibited 
and as a result, non-dendritic grains occurred during 
the high grain density solidification process. 
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4.4 Experimental results 
Factors influencing non-dendritic formation in 

LSPSF processes primarily include pouring 
temperature, rotative velocity and barrel incline 
angle. A low pouring temperature benefits the 
survival of the nuclei formed and separated crystals. 
The rotative velocity of the barrel determines the 
level of radial shear and substrate surface for 
nucleation. The barrel inclination angle determines 
the component of gravity acceleration parallel to the 
barrel axis; it also influences the melt flow velocity 
and axial shear. According to wall mechanisms [27], 
when melt flows over the barrel, copious nucleation 
takes place on the barrel wall or in the thermal 
undercooled region beside the barrel wall. The 
surface area between the melt and the barrel wall 
constantly regenerates and offers virtually limitless 
substrate surface area for nucleation. Hence, new 
nuclei form on the new surfaces of the barrel wall 
and undergo the same cycle. When the melt flow 
and solid movement combine, strong grain 
movement produces a strong melt flow current. In 
turn, the strong flow current influences grain 
movement. In the event of grain movement, grains 
sinking along the barrel wall induce vortices that 
influence solid movement and introduce grains into 
the bulk melt. This dendrite fragmentation theory 
was postulated by CAMPANELLA et al [28]: 
 

1R
V

C
R

                                 (18) 
 

Their criterion suggested that dendrite 
fragments detach from growing columnar dendrites 
and drift towards the center when the magnitude of 
the interdendritic velocity, V, exceeds the 
solidification speed (R=Dl/δ). Assuming the flow in 
the mushy region follows Darcy’s law, the 
magnitude of the interdendritic velocity, V, can be 
expressed as 
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where μ is the dynamic viscosity of the liquid, K is 
the permeability, fl is the volume fraction of liquid, 
and p is the dynamic contribution of the pressure 
responsible for liquid motion in the mushy zone and 
can be estimated using 
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where ρ is the liquid density, θb is the barrel incline 

angle, is the barrel rotative velocity, and r(=0.05 m) 
is the barrel radius. The permeability term 
appearing in Eq. (19) comes from the Carman– 
Kozeny relationship and is given by 
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where d2 is the secondary dendrite arm spacing  
(50 μm in this work). Thus, the dendrite 
fragmentation criterion under the LSPSF is 
calculated as 
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Equation (22) shows that increasing the incline 

angle and rotative velocity of the barrel enhances 
dendrite fragments; convection carries the 
fragments from the solidifying front to the inner 
region of the melt and promotes heterogeneous 
nucleation. The effects of the axial gravity 
component exceed the radial inertia force; a larger 
incline angle benefits dendrite detachment into the 
mushy region. 

The experimental properties and measured 
physical data of the liquid alloys as well as 
calculation results of the criterions with LSPSF are 
given in Table 3. It should be noted that the incline 
angle of the barrel should be not less than 15° to 
achieve dendrite fragments; increasing the rotative 
velocity or the barrel incline angle resulted in 
abundant dendrite fragments. The strong fluid flow 
detached the dendrites from the solid–liquid 
interface and carried them into the bulk melt to 
form a slurry. 

Figure 10(a) clearly shows the microstructures 
of cast 6063 aluminum alloy without LSPSF and its 
dendrite character. Figures 10(b−f) show micro- 
structures at a fixed inclined angle (15°) for 
different rotative velocities (1−2 rad/s). These 
micrographs show that the microstructures consist 
primary of α(Al) phases dispersed throughout the 
alloy matrix; the α(Al) phase became smaller and 
rounder as the rotative velocity increased and 
formed globular morphologies. The quantitative 
results of average particle density and shape factor 
for the primary α(Al) particles in the semisolid 
slurries treated with different rotative velocities 
gradually increased from 120 to 310 mm−2 and from 
0.46 to 0.59, respectively, as the rotative velocity 
increased from 1 to 2 rad/s. Compared with the 
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Table 3 Calculation results of criterions with LSPSF 

Parameter K/10−9 m2 ||Δp||/(Nꞏm3) R/(10−4 mꞏs−1) fl μ/(kgꞏm−1ꞏs−1) CR 

　ω=0 rad/s, θb=15° 1.01 5992.1 14.4 0.9 0.0047 0.99

　ω=1 rad/s, θb=15° 1.01 6110.1 14.2 0.9 0.0047 1.03

　ω=2 rad/s, θb=15° 1.01 6464.1 14.0 0.9 0.0047 1.10

　ω=2 rad/s, θb=20° 1.01 8390.3 14.0 0.9 0.0047 1.43

　ω=2 rad/s, θb=25° 1.01 10256.3 14.0 0.9 0.0047 1.75

 

 

Fig. 10 Microstructures of as-cast 6063 alloy without LSPSF (a) and solidified ingot at fixed inclined angle (15°) with 

rotative velocities of 1 rad/s (b), 1.25 rad/s (c), 1.5 rad/s (d), 1.75 rad/s (e) and 2 rad/s (f) 

 
simulation results, at low barrel rotation velocities, 
stirring action of the barrel failed to transfer 
nucleated grains to the bulk melt effectively. As the 
barrel rotation velocity increased, the stirring action 
of the barrel rapidly transferred more nucleated 
grains to the bulk melt, and thus copious nucleation 
occurred in a uniform solute and temperature field. 

Figure 11 shows the microstructure at a fixed 
rotative velocity (2 rad/s) for different incline 
angles (20° and 25°). Both the roundness and grain 
diameter of the primary α(Al) phase increased as 
the barrel incline angle increased. The effect of the 
shear flow intensity also increased as the barrel 
incline angle increased and resulted in dendrite 
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motion and increased heat transfer between the melt 
and the surface of the inclined barrel. These 
increases all caused additional nucleation. However, 
when the barrel incline angel exceeded a threshold 
value, the time of the molten metal on the barrel 
wall surface dropped, which also lowered shear 
flow and nucleation. A large incline angle reduced 
the flow time in the barrel while smaller inclined 
angle caused a solidified shell within the barrel. 
Sufficient shear flow and an appropriate time 
should be selected to obtain a globular primary 
phase. The fl should be approximately 0.9 to induce 
the formation of dendrite fragments and nucleation 
in the mushy region. 
 

 
Fig. 11 Microstructures of solidified 6063 at fixed 

rotative velocity (2 rad/s) for inclined angles of 20° (a) 

and 25° (b) 

 
5 Conclusions 
 

(1) A phase field lattice Boltzmann model was 
used to simulate crystal growth and motion under 
rotation and gravity. LSPSF experiments were 
conducted to obtain a non-dendritic primary phase. 
Experimental and simulated results both indicated 
that finer and rounder semi-solid slurries were 
obtained at higher rotative velocities. Selecting a 
suitable inclined angle balanced the flow time and 
the shear flow intensity in the rotating barrel. 

(2) A criterion based on a comparison between 
the solidification speed and the fluid flow velocity 
(induced by rotation and gravity) could be applied 
to LSPSF rheocasting. 

(3) It was demonstrated that the phase field 
lattice Boltzmann model predicted the formation of 
non-dendritic structures using LSPSF. The next step 
for the present model is to extend this methodology 
to examine more complex conditions (such as 
mechanical vibrations, electromagnetic stirring, and 
ultrasonic vibrations) and larger-scale poly-crystal 
multicomponent solidification problems. 
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基于相场格子玻尔兹曼模型的铝合金 
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摘  要：采用数值模拟研究基于低过热度剪切制浆机铝合金凝固初期非枝晶组织的形成。采用格子玻尔兹曼法和

相场法相结合，模拟枝晶在凝固过程中的生长和运动。模拟结果表明，充分的剪切流有助于浓度场的均匀化、晶

体的旋转和非枝晶的形成。讨论晶粒间的相互作用。在枝晶臂部分重熔的基础上，建立 LSPSF 枝晶断裂判据，发

现强剪切流和较大的倾斜角度能够增强枝晶断裂，并对模拟结果进行实验验证。 

关键词：数值模拟；非枝晶组织；低过热度剪切制浆(LSPSF)；铝合金；相场法；格子玻尔兹曼法 
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