

ELECTRODEPOSITION OF Ti-Ni ALLOY IN UREA- NaBr - KBr MELT^①

Yang Qiqin, Liu Guankun, Ke Shan and Tong Yexiang

Department of Chemistry, Zhongshan University, Guangzhou 510275, P. R. China

ABSTRACT The cyclic voltammetry and potential-time curve at current step were used to investigate the electroreduction of $\text{Ni}(\text{II})$, $\text{Ti}(\text{IV})$ in the urea- NaBr - KBr melt. The electroreduction of $\text{Ni}(\text{II})$ to nickel is irreversible in one step. The transfer coefficient and the exchange current density of the reaction $\text{Ni}(\text{II}) + 2e = \text{Ni}$ were determined as 0.4 and $1.1 \times 10^{-6} \text{ A} \cdot \text{cm}^{-2}$ at 100 °C. The $\text{Ti}(\text{IV})$ was reduced to $\text{Ti}(\text{III})$ and formed alloy with Ni on cathode in urea- NaBr - KBr - NiCl_2 - TiCl_4 melt. The content of Ti in the Ti-Ni alloy changed with the cathode potential and reached 59% (in mole).

Key words urea- NaBr - KBr melt electroreduction of $\text{Ni}(\text{II})$ electrodeposition of Ti-Ni alloy

1 INTRODUCTION

Titanium and titanium alloys are well-known for their excellent functions, for example, the Ti-Ni alloy has high corrosion resistance, high heat resistance and shape memory effect^[1, 2]. It is difficult to electrolyse TiCl_4 in aqueous electrolyte because of its hydrolysis. Titanium and titanium alloy can be electrodeposited in molten salt. But no report about electrodeposition of titanium and titanium alloy at low temperature melt (~ 100 °C) was found. The melting point of urea- NaBr - KBr eutectic is 51 °C^[3] and this molten system can be used as the electrolytic medium (background) at about 100 °C^[4, 5]. In this paper, the electroreduction of $\text{Ni}(\text{II})$, $\text{Ti}(\text{IV})$ and electrodeposition of Ti-Ni alloy in urea- NaBr - KBr at 100 °C are investigated.

2 EXPERIMENTAL

Urea, NaBr , KBr , TiCl_4 , $\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$ are analytically pure. The $\text{NiCl}_2 \cdot 6\text{H}_2\text{O}$ was dehydrated in vacuum at about 120 °C for 3 h. All compounds used here were stored in the desiccator containing P_2O_5 .

The working electrodes were spectrally pure

graphite and titanium. The reference electrode was Ag/urea- NaBr - KBr . The mixture of urea and salts in the glass cell was melted at about 100 °C. The cyclic voltammogram and potential-time curve at current step were made with HD-1A functional generator, HDV-7C potentiostat and 3086 X-Y recorder. The electrochemical measurements proceeded under argon atmosphere. The temperature was controlled by oil-bath thermostat. The composition of electrolytic deposits was analysed by means of EDAX.

3 RESULTS AND DISCUSSION

3.1 Electroreduction of $\text{Ni}(\text{II})$

Fig. 1 is the cyclic voltammogram (CV) of graphite electrode in the urea- NaBr - KBr - NiCl_2 at 100 °C. The cathodic wave starts at -0.41 V. Electrolysis proceeded with copper electrode at -0.45 V for 30 min. The deposit was analysed as Ni by means of EDAX, so the cathodic wave corresponds to the reduction of $\text{Ni}(\text{II})$ to metallic nickel. The anodic wave with the peak potential of +0.3 V is due to stripping of nickel. The anodic wave is very far from the cathodic wave. These results indicate that the electroreduction of $\text{Ni}(\text{II})$ in the urea- NaBr - KBr - NiCl_2 melt is irreversible in one step.

① Project 29273150 supported by National Natural Science Foundation of China

Received Apr. 16, 1997; accepted Oct. 17, 1997

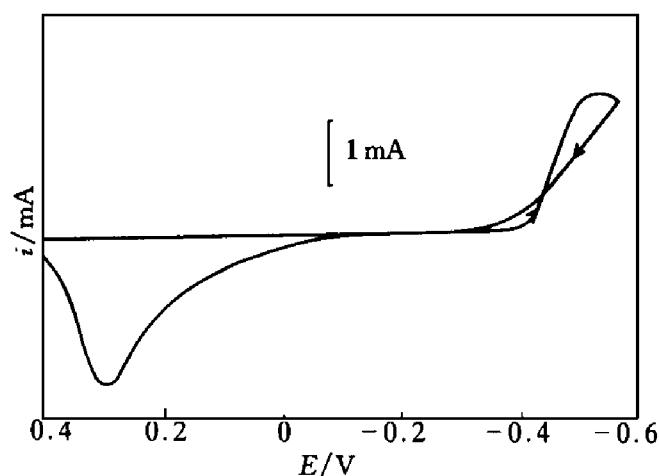


Fig. 1 CV of graphite electrode (0.92 cm^2) in urea-NaBr-KBr-NiCl₂ melt

($C(\text{NiCl}_2) = 0.096 \text{ mol/L}$, $\theta = 100 \text{ }^\circ\text{C}$, $v = 0.01 \text{ V/s}$)

For the irreversible charge transfer, the peak potential and half peak potential has the following relation^[6]:

$$|E_p - E_{p/2}| = 1.857 RT / \alpha n_a F \quad (1)$$

From Fig. 1 and equation (1), αn_a is calculated as 0.75 and α is determined as 0.38.

The voltammograms of titanium electrode in the urea-NaBr-KBr-NiCl₂ melt at different sweep rates are shown in Fig. 2. From the data of

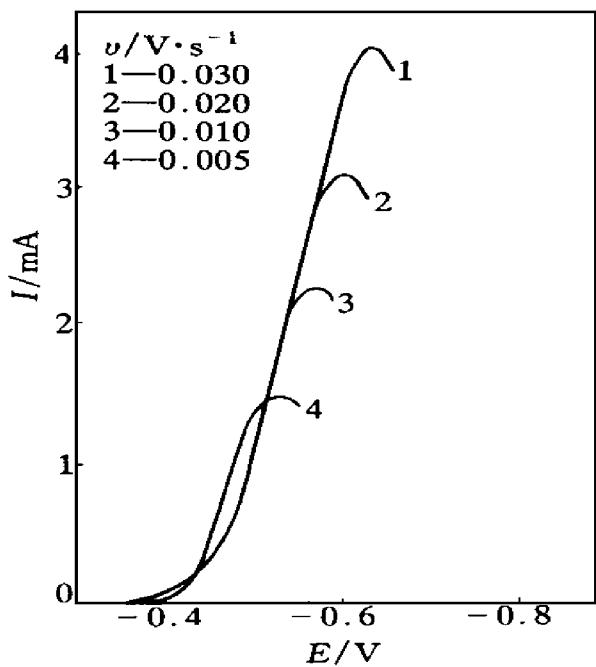


Fig. 2 Voltammograms of Ti electrode (0.62 cm^2) in the melt (as Fig. 1) ($\theta = 100 \text{ }^\circ\text{C}$)

$|E_p - E_{p/2}|$ in Fig. 2 and equation (1), the average αn_a is calculated as 0.90 and the α is determined as 0.45 (Table 1).

Table 1 The αn_a and α of $\text{Ni(II)} + 2e = \text{Ni}$

$v \text{ V} \cdot \text{s}^{-1}$	$ E_p - E_{p/2} / \text{V}$	αn_a	α
0.005	0.061	0.98	0.49
0.010	0.062	0.96	0.48
0.020	0.070	0.87	0.44
0.030	0.076	0.80	0.40
average:	0.090	0.90	0.45

The potential-time ($E-t$) curve at current step of titanium electrode in urea-NaBr-KBr-NiCl₂ melt at 100 °C is shown in Fig. 3. The plot of E vs $\ln[1 - (t/\tau)^{1/2}]$ is a linear line (Fig. 4), because the electrode reaction is irreversible, so this line accords with the following equation^[7]:

$$E = E_e - (RT/\alpha n_a F) \ln(i_k/i_o) + (RT/\alpha n_a F) \ln[1 - (t/\tau)^{1/2}] \quad (2)$$

From the slope and the intercept of the line in Fig. 4 and equation (2), α and i_o are calculated as 0.46 and $1.1 \times 10^{-6} \text{ A} \cdot \text{cm}^{-2}$.

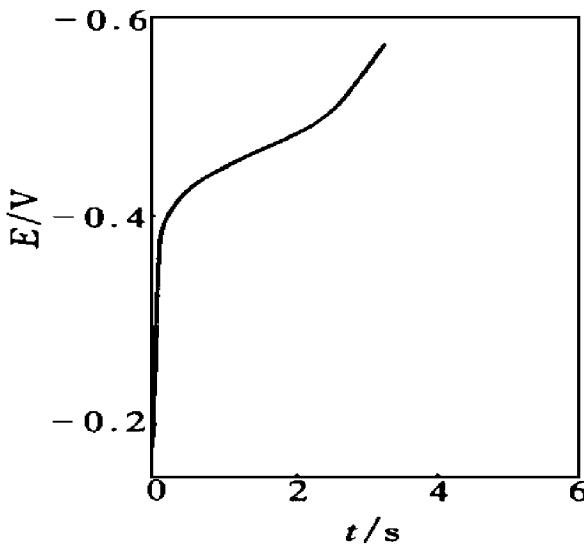


Fig. 3 E-t curve of Ti electrode (0.62 cm^2) in the melt (as Fig. 1) ($i = 3.06 \text{ mA}$, $\theta = 100 \text{ }^\circ\text{C}$)

3.2 Electroreduction of Ti(IV)

Fig. 5 is the cyclic voltammogram of graphite electrode in urea-NaBr-KBr-TiCl₄ melt

at 100 °C. Two cathodic waves start at -0.62 V and -1.10 V, respectively. The second cathodic wave is due to the decomposition of background^[4]. The urea was reduced and the hydrogen evolved^[8].

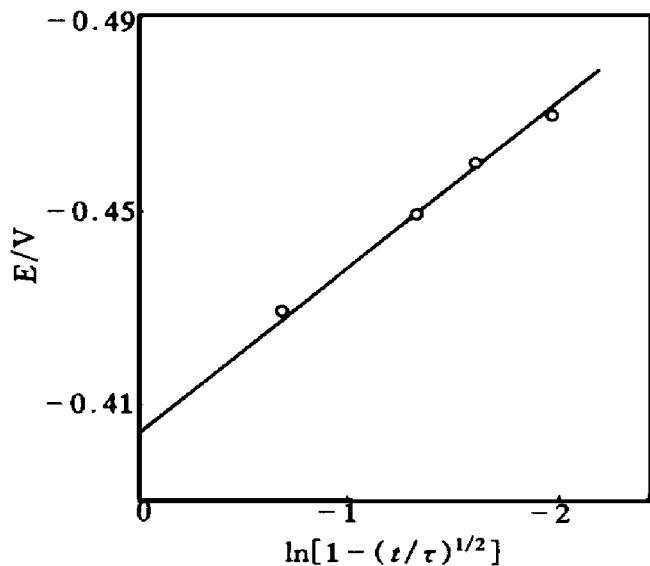


Fig. 4 Plot of E vs $\ln[1 - (t/\tau)^{1/2}]$

Electrolysis proceeded at -0.9 V for 30 min, no metallic product was formed on cathode, but the melt around the cathode appeared as blue-purple, which indicates the existence of Ti(III). Hence the first cathodic wave corresponds to the reduction of Ti(IV) to Ti(III).

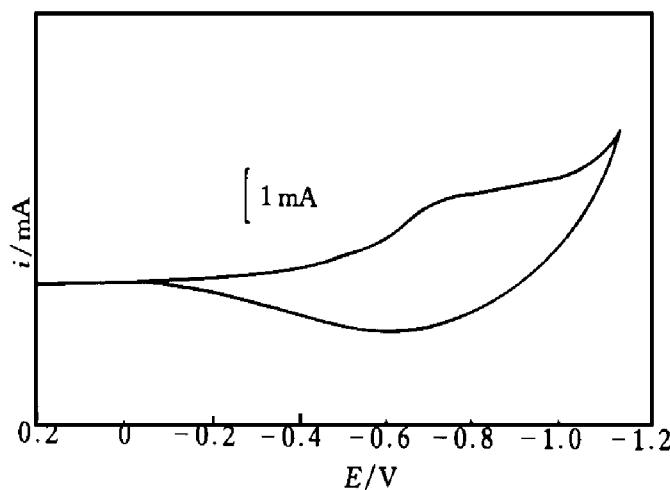


Fig. 5 CV of graphite electrode (0.92 cm^2) in urea-NaBr-KBr-TiCl₄ melt

($C(\text{TiCl}_4) = 0.064 \text{ mol/L}$, $\theta = 100 \text{ }^\circ\text{C}$, $v = 0.02 \text{ V/s}$)

3.3 Electrodeposition of Ti-Ni alloy

The cyclic voltammogram of graphite elec-

trode in urea-NaBr-KBr-NiCl₂-TiCl₄ melt at 100 °C before the cathodic limit of the background is shown in Fig. 6. Two cathodic waves start at -0.4 V and -0.67 V respectively. Only one anodic wave with the peak potential of +0.4 V is found. Electrolysis proceeded with copper electrode at -0.50, -0.60, -0.70, -0.80, -0.90 and -1.0 V respectively for 30 min. The deposits were analysed by means of EDAX and the results are shown in Table 2.

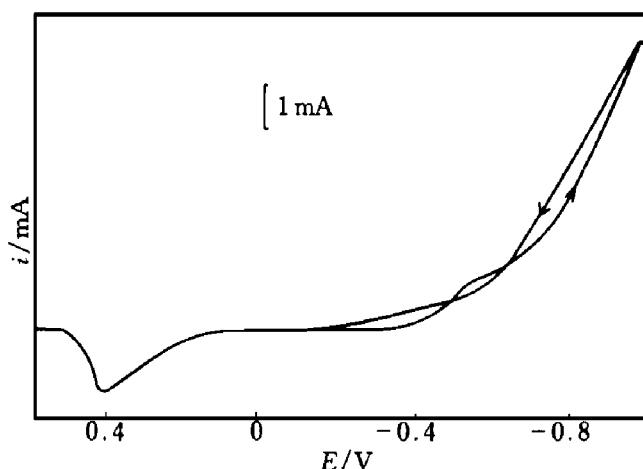


Fig. 6 CV of graphite electrode (0.92 cm^2) in urea-NaBr-KBr-NiCl₂-TiCl₄ melt

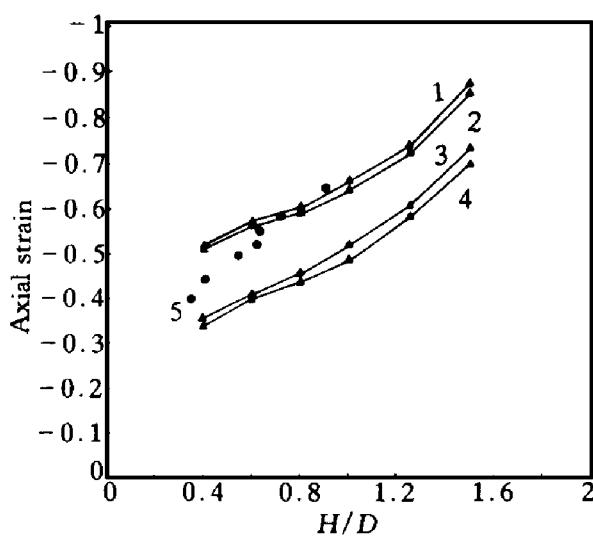
($C(\text{NiCl}_2) = 0.096 \text{ mol/L}$,
 $C(\text{TiCl}_4) = 0.064 \text{ mol/L}$, $\theta = 100 \text{ }^\circ\text{C}$,
 $v = 0.02 \text{ V/s}$)

The data in Table 2 suggest that the first cathodic wave is due to reduction of Ni(II) to nickel, the second wave corresponds to formation of Ti-Ni alloy. The content of Ti in the Ti-Ni alloy increases from the cathode potential of -0.7 V to -0.9 V.

Table 2 The contents of Ti-Ni alloys at different cathode potential

E/V	Mass fraction/ %		Mole fraction/ %	
	Ti	Ni	Ti	Ni
-0.50	0	100	0	100
-0.60	0	100	0	100
-0.70	16.9	83.1	19.9	80.1
-0.80	48.1	51.9	53.2	46.8
-0.90	54.0	46.0	59.0	41.0
-1.00	35.3	64.7	45.5	54.5

4 CONCLUSIONS


(1) The electroreduction of Ni(II) in urea-NaBr-KBr melt is irreversible in one step and the nickel is deposited on the cathode.

(2) The transfer coefficient of the reaction $\text{Ni(II)} + 2\text{e}^- \rightarrow \text{Ni}$ is determined as about 0.4 and the exchange current density is determined as $1.1 \times 10^{-6} \text{ A} \cdot \text{cm}^{-2}$ at 100 °C.

(3) The electroreduction of Ti(IV) in urea-NaBr-KBr melt before the limit of the background is corresponding to the reaction $\text{Ti(IV)} + \text{e}^- \rightarrow \text{Ti(III)}$.

(4) The Ti-Ni alloy can be electrodeposited in the urea-NaBr-KBr-NiCl₂-TiCl₄ melt. The titanium content changed with the cathode potential and reached 59% (in mole) at -0.90 V.

(From page 27)

Fig. 6 The critical technological parameters

1 — $m = 0.3, R_0 = 0.85$; 2 — $m = 0.3, R_0 = 0.90$;
3 — $m = 0.5, R_0 = 0.85$;
4 — $m = 0.5, R_0 = 0.90$; 5 — Experiment

with full account of contact friction boundary conditions, the height to diameter ratio and the initial relative density, in combination with the Lee-Kuhn's fracture criterion. This discussion reveals the effect of height to diameter ratio,

REFERENCES

- 1 Tomioka H and Ueda S. *Hyomen Gijutsu*, 1990, 41 (1): 349.
- 2 Kusamichi H *et al* eds., Cheng Min *et al* transl. *Metallic Titanium and its Application*, (in Chinese). Beijing: Metallurgical Industry Press, 1989.
- 3 Gambino M and Bros J P. *Thermochimica Acta*, 1988, 127: 223.
- 4 Yang Qiqin *et al*. *Electrochemistry*, 1995, 1(3): 274.
- 5 Yang Qiqin *et al*. *Acta Physico-Chimica Sinica*, 1995, 11(11): 965.
- 6 Bard A J and Faulkner L R. *Electrochemical Methods*. New York: John Wiley & Sons, 1980: 223.
- 7 Tuan Zhaowu. *Electrochemical Research Methods*, (in Chinese). Beijing: Science Publishing House, 1984: 157.
- 8 McManis G E *et al*. *J Electroanal Chem*, 1985, 190: 171.

(Edited by Wu Jiaqun)

friction factor and initial relative density. From the work, the critical technological parameters were obtained, which can lead to choose the suitable technological parameters to avoid the occurrence of fracture. It is very important to guide the practical production according to the critical locus.

Of course, for porous materials, if we want to know the details of defects forming, more work should be done.

REFERENCES

- 1 Peng Yinghong *et al*. *J Mater Proc Tech*, 1994, 45: 539.
- 2 Li Miaoquan *et al*. *Applied Mathematics and Mechanics*, 1990, 11(8): 733.
- 3 Gelin J C *et al*. *Ann CIRP*, 1985, 34(1): 209.
- 4 John L F *et al*. *J Mater Shaping Tech*, 1989, 7(1): 57.
- 5 Lee P W *et al*. *Met Trans*, 1973, 4(4): 969.
- 6 Doraivelu S M *et al*. *Int J Mech Sci*, 1984, 26 (9/10): 527.
- 7 American Metal Institute. *Metal Manual*. Beijing: Mechanical Industry Press, 1994, 9(7).
- 8 Wifi A S *et al*. *J Mater Proc Tech*, 1996, 56(1): 918.

(Edited by Zhu Zhongguo)