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Abstract: Deformation of high rock excavation slope has nonlinear evolution characters. It is very difficult to

build mechanical model to describe this nonlinear evolution. A genetic-neural network model has been initially

proposed for adaptive and intelligent prediction of deformation of slopes, which used artificial neural network to

represent nonlinear evolution of slope deformation. Number of history points of displacement inputted to the
model, topologies of neural network, and learning process of model were adaptive and automatically deter-
mined using genetic algorithm. The obtained model was thus optimal at global range, and gave predictions of
horizontal displacement at succedent three months for the three measurement points with average relative error

of 1.4% compared with the measured values. Results from one step prediction and multi-step prediction were

combined with the measurements.
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1 INTRODUCTION

For high rock excavation slope, the defor-
mation is generally intrinsic nonlinear evolution
of time dependence. If we know well about this,
we can make reasonable and timing decisions on
whether adjustment or reinforcement measures
should be performed or not according to dynamic
evolution law. Therefore, it is necessary to es-
tablish dynamic evolution model on the deforma-
tion. The traditional methods are all based on
mathematical time series analysis such as auto-
regression, GMDH, etc. However, in most cas-
es, it is very difficult to find a reasonable mathe-
matical model in global space. Alternatively,
neural network provides a strong tool for it/ 731,
In order to obtain optimal solution in global

(6] and

range, this paper use genetic algorithm
extrapolating algorithm!” ™' to combine neural

network to make adaptive prediction of displace-

ment of high rock excavation slope.

2 GENETIC-NEURAL NETWORK MODEL-
ING OF DISPLACEMENT OF HIGH
ROCK SLOPE

2.1 Methodology

Modeling on displacement time series is to
find the following description;

Livp = f(l"z t e vt

Zit(p-1)) i =12, (1)
p is number of displacement history
points, representing the history of displacement
evolution of the slope; z;, , is displacement val-

where

ue at current time 7 + p; Ty, Xis1s
Z;4(p-1) are previous displacement values at
times i, i +1, -i + (p —1); f is a nonlinear
relationship between them.

It is often difficult to represent f using cer-

tain mathematical equations. Considering neural
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networks have strong capability to learning and
nonlinear dynamic processing, a multi-layer
feed-forward neural network is thus used to rep-
resent the function f. The neural network can
be learned by training with historical displace-
ment values of the slope. There exist two most
important problems to be solved for this repre-
sentation, one is how to get a reasonable value of
p, the other is how to get the best network
topology to describe the relationship f. For the
former, it is often determined artificially in all
existing time series analysis, in this paper, ge-
netic algorithm is used to search it in global
space, thus the obtained solution is optimal glob-
ally. For the latter, genetic algorithm is used a-
gain to search the best topology in global opin-
ion. An extrapolating algorithm is also used to
train the selected network to overcome the
“over-train” problem. The neural network mod-
el thus obtained can give the best predictions for
future. The proposed genetic-neural network al-
gorithm can be described as follows.

Step 1 Initialize genetic space, number of
parameters to be determined (e.g. p and num-
ber of nodes in each hidden layer), and evolution
generations of network topologies, population size
(number of network topologies at each evolution
generation ), length of binary string for repre-
senting a chromosome, probability of crossover,
probability of jump mutation per chromosomes
(bits), probability of creep mutation per parame-
ter, number of random seeds and value range of
per parameter to be determined.

Step 2
structures and regard them as parent generation.
Per set of network topology is represented as a
chromosome with a binary string.

Step 3  Historical values of displacement
are used to train the neural network with the re-
selected topology. The connection weights of the
network are modified by using delta rules. Cal-
culate fitness of per chromosome ( network topol-
ogy) which represents applicability of the select-
ed topology for the network to the given dis-
placement prediction problem. The fitness F can
be calculated as

F=x3(x -z, 2)

i=1

Produce a set of initial network

n is number of multi step prediction, x;
is predicted value of displacement at ith time
step, x’; is measurement of displacement at ith
time step.

The fitness F indicates that applicability of
the network topology. Considering the predic-
tion performance of the network is up to the
training process, the minimum fitness shall be
found for per network topology.

Step 4 The process is halted if a suitable
solution has been found, or if the available com-
puting time has expired; otherwise, the process
proceeds to Step S where the new chromosomes

where

are scored and cycle is repeated.

Step 5 Select randomly two parent’s indi-
viduals i; and 7, whose fitnesses are smaller than
average value.

Step 6 Carry out a crossover operation on
the individuals 7; and i, to produce a new chro-
mosome. Per bit of the chromosome binary
string is mutated at probability to produce a new
chromosome.

Step 7 Repeat Step 5 and Step 6 until fin-
ishing production of N new individuals that is
considered as offspring.

Step 8 An individual of offspring is re-
placed randomly by the best individual of parent.

Step 9 The parent individuals are replaced
by the offspring individuals. Go to Step 3.

2.2 Acquisition of neural network model

For a time series of slope displacement {x}
= ( T1y Iy
be constructed as follows: for the first training
sample, x1, x,, ***, x, are used as input of the
network and the network gives its output for
Z,+1; for the second training sample, (z;, z3,

-, x,), the training samples can

""", Xp, Xp+1) are used as input of the network
and the network gives its output for x,+,; and
so on.

When the extrapolating prediction algo-
rithm'” is adopted, it needs some testing sam-
ples to test applicability of the networks. As the
same way of training sample construction, the
testing samples can be built as: for the first test-
ing sample, x1+§, T2+N5 s Tp+ N are used as

input of the network and the network gives its
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output for x,.1+y, in which N is number of
training samples; for the second testing sample,
L+ Ns» L3+Ns s TpiN» Tp+14+n are used as
input of the network and the network gives its
output for x,+,+ N3 and so on.

The network models obtained using genetic-
neural network algorithm mentioned above are
tested by testing samples. The model with the
minimum fitness is the best one.

2.3 Extrapolating prediction

The prediction of displacement in future
was carried out in two ways. One is called to be
prediction for only one time step {for example,
one month or day), i.e., the foregone p points
of measured value was input to the model for
predicting displacement of approaching month.
The other is the extrapolating prediction for
multiple time steps, called multi-step-extrapolat-
ing prediction. It is that displacements at the
succeeding times were predicted by using feed-
back of the foregone predictions (not measure-
ments) as inputs.

3 ADAPTIVE AND INTELLIGENT PREDIC-
TION OF DISPLACEMENT

The deformation evolution characters of
three measurement points at an important high
rock excavation slope were respectively modeled.
For the point No. 1, the measured data of dis-
placement of the foregone 26 months were used
to build model. The best neural network model,
with input nodes of 10 and hidden nodes of 5,

were automatically recognized by using genetic
algorithm. The model is called NN(10,5,1) in
briefly (Table 1). The most reasonable history
point number is recognized to be 10. The net-
work gave the best-extrapolated prediction for
displacement of coming three months (Fig. 1)
when learning process was finished at system er-
ror of 0.004 578. The average relative error in
three months is 2% .
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Fig.1 Comparison between predictions and
measurements of displacement at point No. 1

For the point No. 2, the measured data of
displacement of the foregone 28 months were
used to build model. The best neural network
model was recognized by NN (7,9, 1) (Table
2). The model gave its extrapolated predictions
for succedent three months with an average rela-
tive error of 1.6% (Fig.2). In this case, the
learning process was finished when system error

Table 1 Network connection weights for point No. 1 obtained at learning rate of 0.20,
momentum rate of 0.20, learning iterations of 6 829, and system error of 0.004 578

Input node
T
1 2 3 4 5 6 7 8 9 10
H; -2.571056 —2.371901 ~2.287198 2.879383 2.524701 1.556788 —4.640572 —4.459610 —3.743047 —1.311150-0.604 958

H; -0.892310 —2.890160 —4.563337 —2.452960 —6.164756 —0.940371 —3.759381 —3.493139 ~3.310608 —0.814219 0.106198
H3 -0.930877 —-2.771086 —3.354400 —2.755471 —5.385030 —0.566963 —4.523244 —4.588775 —4.199772 —1.327737-0.978387

Hy -0.900972 -3.326949 —4.658839 -3.516110 —6.335795 —0.909315 0.436920 0.972134 0.375406 —1.480794—0.628515
Hs 0.119360 0.223910 1.342886 0.412653 2.185788 2.585075 0.399393 0.525898 0.690266 —0.783685~0.880810
Weight of hidden node 7 to output node
1 2 3 4 5
-0.172989 0.928 560 0.814126 0.505678 1.747142

Threshold of output node: 2.547 504

T: Threshold of hidden node, H; node i at hidden layer (i =1,2, -+, 5)
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Table 2 Network connection weights for point No.2 obtained at learning rate of 0.20,
momentum rate of 0.20, learning iterations of 270000, and system error of 0.001 818

Weights Input node Threshold
1 2 3 4 5 6 i ofitede
-1.326441 —1.462338 —1.018822 5.908441 —1.306099 2.431231 -1.433767 -1.585980
6.374451 1.116657 —4.925531 -2.394282 —2.018339 ~2.633850 —2.296708 -3.314130
~5.846640 —0.832948 —4.275996 —1.944191 ~2.304292 —2.100098 -3.031571 -3.875398
Hidden ~5.706339 —1.151190 —3.689262 —2.041232 —2.255008 —2.554525 —2.697729 -3.593282
node .376954 —0.457580 2.875009 ~1.724090 —1.423209 —1.110188 —0.326020  0.471047

5.633148 5.732262 —4.512120 ~1.986218 —~1.513087 -2.402166 —2.383893 —3.275465
—5.553760 —0.756462 0.528134 0.291847 —-0.208527 -0.777912 0.191229 1.050950
1.770184 1.818255 —4.451853 -2.899446 ~2.135082 —2.485939 —3.043012 -3.677103
—6.511381 —1.272552 ~3.401183 —-1.471546 —1.249787 —1.977117 —2.514302 -2.678843
Weight of hidden node i to output node
1 2 3 4 5 6 7 8 9
~5.269279 -0.691227 2.907712 -1.631822 —0.891247 ~1.130763 —0.647544 0.467083 6.019415
Threshold of output node: 6.411 163

O 0 NN R W N e
|
W

of 0.001 818 arrived (see Table 4 below). 30

By the same way, for the point No. 3, the
measured data of displacement of the foregone 18
months were used to build model. The best neu-
ral network model was recognized by NN (6, 7,
1) (Table 3). The model gave its extrapolated

[\ (3]
< W
T T

Displacement/ mm
—
(9]
T

predictions for succedent three months with an 10 © Measured

average relative error of 0.45% (Fig.3) when sk 4 Learned

the learning process was finished at system error 0 1 1 ° Mllllti-step Plredicted

of 0. 002 793 (Table 4). The obtained models 1995-07 1996-02 1996-08 1997-03 199709 199804
and their applicability are shown in Table 4. Year-Month

Fig.2 Comparison between predictions and

4 CONCLUSIONS . .
measurements of displacement at point No.2

(1) Evolution characters of steep and high

slopes are nonlinear. It is effective to use neural 14
network to represent it. Genetic algorithm is 12t :te:rs::zd
adopted to learn and search the topologies of the © Multi-step predicted
network in global space, which provides a feasi- E 10F
bility that the obtained network will have the = gl
best performance for extrapolating predictions %
for slope displacement. .§ or
(2) Failure of slopes is progressive. This 2 4}
indicates that its evolution history has influence
on its further deformation. In this paper number AP
of historical points, p, is adaptive determined 0 1 1 L A

1996 - 07 1996 - 12 1997 -04 1997 - 09 1998 - 02

by using genetic algorithm. This overcomes in- Year-Month

accuracy of man-made.
(3) The predicted values of displacement Fig.3 Comparison between predictions and
are fed back to be input of the model to obtain measurements of displacement at point No.3
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Table 3 Network connection weights for point No.3 obtained at learning rate of 0. 20,
momentum rate of 0.20, learning iterations of 11670, and system error of 0.002 793

Weights ) I?lput node Threshold
1 2 3 4 5 6 of e

1 -1.795402 —1.354019 —2.241843 3.311488 —1.726332 —1.041248 -1.691313

2 0.697101 -0.777616 —4.774743 -3.688976 —3.288467 -—5.036647 —10.131194

Hidden 3 —0.095657 0.966802 -2.270329 -—1.437545 -—1.281913 -2.774647 -6.518713
node 4 -0.567926 -—1.718766 ~—5.386236 —3.780338 -4.317080 —6.083877 —-11.593781
5 —0.574924 -—2.661492 0.759703 ~0.193892 -—0.585093 1.068807  3.365463

6 2.183428 0.655316 -1.897594 ~-1.011000 -1.420524 -2.291870 -6.103319

7  —1.666079 -0.034704 -2.148395 -2.211417 -1.879339 -3.498095 -—7.248581

Weight of hidden node i to output node
1 2 3 4 5 6 7
~0.586132 0.748127 ~1.111925 ~0.222245 -0.246251 —1.446 142 -2.890550

Threshold of output node: 0.389203

Table 4 Obtained models and their predictions for horizontal displacement of
three measurement points for succedent three months

Measurement Data length used for The most reasonablg The obtained neural ~ Average related error
point building model/ months learning error network model of predictions
No.1 26 0.004 578 NN(10,5,1) 2%
No.2 28 0.001818 NN(7,9,1) 1.6%
No.3 18 0.002793 NN(6,7,1) 0.45%
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