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M. T B3 20 i & 4 TR A R G R 7E
—15~5 kJ/mol, LAY Q. 5 FESH, Rl
TEEFLL Q=11 6<6.6%/E N RUEEH 145K
Pl o

HRREM S EMETE MR AHEVIRR, HikE
Gadlnis, RRREEE LR T R ZE RN Al
RERIFEIRECR, ZRE % B E BRI E kA
TCla) JR 5 RF 220 Tt m i & e EE s . JTeE
K Miedema P15 2] 7 AW 538577, 5 LA R
TR LS & 0] AT H T 22 J0 & 4 300 S R 0
A 45 A Miedema A JL T ¥ @ B A i &
AlL(CuMgSi-T),—, (T=Ag, As, Au, B, Ba, Be, Bi, C, Ca,
Cd, Co, Cr, Cs, Fe, Ga, Ge, Hf, Hg, In, Ir, K, La, Li, Mn,
Mo, N, Na, Nb, Ni, Os, P, Pb, Pd, Pt, Rb, Re, Rh, Ru, Sb,
Sc, Sn, Sr, Ta, Tc, Ti, TL, V, W, Y, Zn, Zr) fLoc & 4 KR
Al RN RF 255, W5 v S
I TG R A T RO AT e

1 HEGE

1.1 ZTEEHIRE

ZHANG %05 36]%[1 SUN ZP7I%t Miedema BHiG7E
THE Zud R BUE RZEAE TIETE. ST 206
GRS, Uy RER RS FE T HIoE B,
OUYANG %P4 Miedema FRi 45 & JUAT Y iy
BT MR 22 0 & < ) 5E BL . FIA Ouyang 5
AT UAR R G EERE N, BT RRA:

) 1.2 X
AH iy =5 AH (Y1, Vi2) +

x
33 AH 3 (313, 313) +

Yi2d12 Y313
A1"114()’1433214)+ 5 A1"115(5’1553’15)‘|r
J’14J/14 J/1SJ’15
x2x3 2 4
AH23(y23,y23)+ AH24(y24,y24)+
yzayza y24y24
x2x5
o) Ast(J’zs»)’zs)+ A1{34()’34»)’34)+
yzs}’zs )/34)/34
x3x5
3 AH35()/35=)’35)+ AH45(y45=)’45)
)’35)’35 )’45)’45

()
Rt A ATITEESIRAR, AH, (,j=1,2,3,4,
SYRAFRI L RGMIR AR, x & RY AL B
VH vy TG R GBI R — 58 R G
RIS, i B HIBR AL, R AL A RS

J’112 =X +5112(353 +X4 +Xs) y122 =X +§122(x3 +X4 +Xs)
)’113 =X +§113(x2 +X4 +Xs) y133 =X3 +5123(x2 +X4 +X5)
J’114 =X +5114(352 +X3+X5) y144 =Xy +51i(x2 +X3+Xs5)
Pis =X+ 8l5(Xy + X3+ X)) Pis = X5+ 05 (%, + X3 +x4)
yf; =X +§223(x1 +X4 +Xs) yi; =X3 +§233(x1 +X4 +Xs)
Vau =Xy +834(x, +X3 +X5) Vag = X4+ 65 (x, +X3+X5)
y§5 =X +5225(351 +Xx3+X4) ygs =X +5255(x1 +X3+X4)
)’§4 =X; +5334(x1 +X, +X5) y§14 =Xy +5344(351 +X +Xs)

3 3 5 5
V35 = X3 +035(X + Xy +x4) V35 = X5 + 035 (X +xp +x4)

4 4 5 5
Vs =X4 +045(X + Xy +X3) Yis = X5 +055(x + X5 +x3)

(2)

Sty = A WAy + 29), 80 = 20 (2 + 1)

Sis = M /(A +23), 67y = A3 (2 + 43)

Olg = A (A + Ag), Oy = Ay IOy + Ay)

Sls =44 /(A + 25), 615 = A5 (A + As)

83 = A My + 15, 83 = 1o (2 + 25) )

O34 = 2 I3 + 24), 624 = 24 (2 + 2y)

5225 =2y (2 +5) , 635 = A5 (2 + As)

O3 = A (A + 244), 834 = 24 (23 + 24)

835 = A3 Ay + As), O35 = As (2 + As)

Sis = Ay [(Ag + As5), O35 = As Ay + As)

A =(AHy —AH3,)? +(AHy, —AH ) +
(AHzl_AH51)2+(AH31_AH41)2+
(AH31—AH51)2+(AH41—AH51)2

Ay =(AH), = AH)? +(AH,, - AH )* +
(Ale—AH52)2+(AH32—AH42)2+
(AH32_AHsz)2+(AH42_AHsz)2

A3 =(AH 3 —AH ;) +(AH 3 — AH ;3)* +
(AH13—AH53)2+(AH23—AH43)2+ (4)
(AH23_AH53)2+(AH43_AH53)2

Ay =(AH = AH,,)? +(AH,, — AH3,)* +
(AH14_AH54)2+(AH24_AH34)2+
(AH24_AH54)2+(AH34_AH54)2

As = (AH s — AH)5)* +(AH s — AH 5)” +
(AHls_AH45)2+(AH25_AH35)2+
(Ast_AH45)2+(AH35_AH45)2

TICHEERFINRE R AH T E AT 2
Bonl i SCHR[43145 5] .
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1.2 o8
0 BB RUENA &M AT R R T R0
#, FTRWE

(%)

i (6)

X x ARG R HG ry X R SO R
R4, nBUESCHR44]: 7 AFTA A ETF
FEINEUA -

2 WELSRKITIE

2.1 AlCu-Mg-Si UtiFRE%

Al-Cu-Mg-Si MUetk RH 1 O AR —A 3
s AR, 1 g — N EA 2 B 2 eEy,
1 AlsCu,MgsSic* 0, Al,Cu;MgsSi,*\ AL Cu,MgsSis ™.
Al7CusMgysSize?F Aly sCuMgo sSig? 2% . ] Ouyang
7 J& Miedema 5 84115 7 SCHRIRIE BT A AL B P HITE
Bk, S — MR A B AR R B
EP2 2T T A, ik 1 FR.

% 1 ATLLE Y, CALPHD iH5 A5 — PR P i
BAFRN AR BT, ¥ Miedema 5845115
B 48X HEA L AT AT VE T B L B, (H
3, BAK EA YIS . WOLVERTONPH 55— R
HHE T O M ALCu,Mg,,Si; TEHUE, Al;Cu,Mg,Siy
e Al JEFRUANARE G, TR N-17.6~7.0
kJ/mol, Al,Cu,MggSi; 7F Al J5F FIPYANASE 47 R
TE K N—15.6~12.4 kJ/mol, Kt Al J&-7 5A14:5]
i O MG (AR AL o T Miedema BRI 54T %
FE B ARG S e, Rk A m . T
Al-Cu-Mg-Si VU7t 2 Ak & W0 I T Bk TG S50 45
B, HETAREE—P

2.2 Al(CuMgSi-T). AT REE

#ILE T (T=Ag, As, Au, B, Ba, Be, Bi, C, Ca, Cd,
Co, Cr, Cs, Fe, Ga, Ge, Hf, Hg, In, Ir, K, La, Li, Mn, Mo,
N, Na, Nb, Ni, Os, P, Pb, Pd, Pt, Rb, Re, Rh, Ru, Sb, Sc,
Sn, Sr, Ta, Tc, Ti, T, V, W, Y, Zn, Zr) A Al-Cu-Mg-Si
V9oeik &, %8 Al L& BB It i & &R G
JEFIRIR, THHE T Al(CuMgSi-T),, (x=0.3~0.7) H.JC
AR ANBEESREE. AHT RN HLAE SR
a5 o ZHWE 1 s,

#F1  Al-Cu-Mg-Si Wyu & G M ke
Table 1 Formation enthalpies for Al-Cu-Mg-Si quaternary

compounds
c d Formation enthalpy/(kJ -molfl)
ompoun
P CALPHAD First-principles Present work
AlCu,Mg,Si; —15.5121 ~7.14
-13.124
AlL,Cu,Mg;0Si; -16.8121 -7.50
—14.624
AlLCu,MgoSi;  —17.919 -17.6121 -7.68
—17.48% -16.1%%
—17.4
~14.91%°)
—15.724
-17.628
Al Cu,MggSi; —15.721 ~7.65
—14.2%
—15.512%
—13.724
AlsCu,Mg;Si; -13.0121 —7.41
AlsCu,MggSig  —35.51% —12.0% -7.07
-12.912%
—11.984
—12.588
Al Cu;MgsSiy -6.06
Al,CugMg,sSie  —18.0%7 -6.96
Al sCu,Mgq sSig —11.4%7 -7.07

Hi(kJ-mol ™)

1 AL(CuMgSi-T) AR EERERE § SE(BAE S
FREEREE 0 SRR LORERR SN & 20
Gy W EOERARRIR A S IR A I A))

Fig. 1 o for
Al (CuMgSi-T),-, quinary system alloys (black dot indicates

Mixing enthalpies and parameter
relationship between mixing enthalpies and parameter J; red
ball indicates composition point for HEA; blue ball indicates

composition point for solid solution status)
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B 1 R LLE H, Al(CuMgSi-T), -, K R P55 &
HIHE—15 kI/mol <AH,;, <5 kJ/mol, H. 6<<6.6%MIR 7
FEERTEFE RS2 10%0A, &85
TR ERK R R 7R Z R &S0
P2, —ZEBAT B, C. N. P . Be i 7R~
BUNOAES B L &8, KRBT Na. K.
Rb. Cs. Ca. Sr. Ba. Y. La i F R ~TH K4
& WEEEEITR. XWETTRNBANE RS LN

(a) 9 Al-(CuMgSiAg), . ™ Al-(CuMgSiAs),_,
* Al -(CuMgSiAu) Al -(CuMgSiCd),_,
® Al i ~ e

T-x;

s T=x O e

Hi(kJ-mol ™)
&

Iy

6'6}69’)3’5.@ X Oge
9% > 580,870, N

(©) @ Al-(CuMgSiHg),., = Al-(CuMgSiln),_,
* Al ~-(CuMgSilr),_, AlL-(CuMgSiLi), _,
@ Al(CuMgSiMm) o,

L

Hi(kJ-mol ™)
&

(e) @ AlL-(CuMgSiPy),_, = Al-(CuMgSiRe),_,
* Al-(CuMgSiRh),_, 4 Al-(CuMgSiRu),_,
® Al-(CuMgSiSby_, ——

T

(8 9 Al(CuMgsiV),,
* Al ~-(CuMgSiZn),_,

= Al-(CuMgSiW),_,
Al ~(CuMgSiZr),_,

Hi(kI-mol ™)

Hi(kI-mol™)

FBER, SEUR RSP ESAE R WNE1iE
AIE TR R G A RSB R I AR 0 75 5 H 4
FIJRH, FER Al JoFR B 51 R AR AR IR
T RSP 07 Z A8 AL

1 P& TRy RAEF B, N T8
D EERERE. TR K 6 ZHZ AL R, K
2 5l T Al(CuMgSi-T) . Tc & @ik R & A4
HIFTE &4k &, H T=Ag, As, Au, Cd, Co, Cr, Fe,

(b) @ Al-(CuMgSiCr),_,

= Al-(CuMgSiFe),_,
* Al -(CuMgSiGa),_,

Al-(CuMgSiGe), .

© ALACuMgSiHf

Hi(kJ-mol™)

(d) @ Al-(CuMgSiMo),_, ® Al-(CuMgSiNb),_,
* Al-(CuMgSiNi),_, Al-(CuMgSiOs),_,
g,A,lx—(,CuMgSiPdT;;*wf——wnf -

) @ Al-(CuMgSiSc),_, = Al -(CuMgSiSn),_,
* Al-(CuMgSiTa),_, 4 Al-(CuMgSiTc),_,
® Al uMgSiTi)‘rl_:\\ —

: L

2 AL(CuMgSi-T) R R A& AR NG SIRE
Kis ALTCER K 0 ZHIIR R

Fig. 2 Relationships among mixing enthalpies, content
of Al element and parameter 0 for Al (CuMgSi-T),_,
quinary HEAs: (a) AL(CuMgSi-T),, (T=Ag, As, Au,
Cd, Co); (b) Al(CuMgSi-T);—, (T=Cr, Fe, Ga, Ge, Hf);

(¢) AlL(CuMgSi-T),, (T=Hg, In, Ir, Li, Mn);
(d) AL(CuMgSi-T);—, (T=Mo, Nb, Ni, Os, Pd);
(e) AlL(CuMgSi-T),, (T=Pt, Re, Rh, Ru, Sb);

® Al(CuMgSi-T),-, (T=Sc, Sn, Ta, Tc, Ti);
(8) AL(CuMgSi-T) i (T=V, W, Zn, Zr)



2529 B 11 1 ik, S ALEIGEME SRR SIET R 2605

Ga, Ge, Hf, Hg, In, Ir, Li, Mn, Mo, Nb, Ni, Os, Pd, Pt,
Re, Rh, Ru, Sb, Sc, Sn, Ta, Tc, Ti, V, W, Zn, Zr.

M 2 T DLE H, oA R 8 2 A —
AR, BAAWT

1) xa-6 #EEET EAE R I H B IES, 6 S5
AL E R INZEHECN, 2 Al JGER & RN,
Gt AR T EN TR RS Z R i sTBOR, B
S B 51 RN 77 %

2) %TF Al(CuMgSi-T),  (T=Ag, As, Au, Co, Cr,
Fe, Ga, Ge, Hf, Ir, Li, Mn, Nb, Ni, Os, Pd, Pt, Rh, Ru, Sc,
Ta, Tc, Ti, V, Zn, ZOIK R, xa-H F1 0-H B LB
A S AR TRE A TE AL G ER S R N
WK BE 6 ZHAR N ZE B K X T
Al(CuMgSi-T),_, (T=Mo, Sb, Sn, W)/K &, I H %
B AR S, TREIABE AL JTER S &0 gk
/N B O SHURNTITEET RN X T AL(CuMgSiCd), -
1 Al(CuMgSiHg),_, K &R, TF xo-H F1 6-H #E21H TR
B IEA WE AL 3T Al(CuMgSiRe), K &,
TE xar-H B THTR AW BE Al R & S8 n Jamk 5
R, 1 0-H BesU IR &K BE 6 208N el 5 1
Ko

GEREFEHITTRME LB RE, TR
BEENfRetAEER . fAetdEy, —
FBC T ) T T Bk 2 A P RS R R KA . MIEDEMA
SIS e A e R ARV TR R A4 T LR 25 )
S G R, BARRRE SR T &R &
YR SR, T2 oaehkRinsg, La
SHEREME R, WEREG, &&4TEEs
JIinE, EREE 5T R Infe e &R AL EY, K2,
RAISHIE, Aot aRe iz, HnmAss
AT . Bk, &G SRR LIRS
TE PRV, A5 2 TV R e 8 O B YA TR LA B2 114 [V A
AT I, B 2 AlL(CuMgSiRe), , H—#B5r & &1k
RZE| Al TR BRI, 2 S 80E Ke 2
ANPRERS, ARIT EE A 4 A T

TAKEUCHI PO 3E 5 B it iR 48 H & 4 4 ot
FW R RAF 255 R e SO e vimk. 75 S G
SRt WAAERLENR, KE2HEHEET TR
Hordein, JEFHPE R s B F, S F R
ST 2SRRI IR 7, A RS SR, A
FIFEIRE IR thoh, S RMEFRS ZERE
SEOE KM SRS, PR AAH R AR RE, 1T RAR AR
NIE, 2SBEERA/ M IEME, AT KRR E
(AR . M 2 T DL, A& e 3R 4H BoR K
Sy bR B & & 1 R RSP 2.

3 Z5ip

1) FIH Miedema HRA LAY BT HE T
Al-Cu-Mg-Si V476& 444 & SCRRARGE I BT A AL &4
JERUE, A S CALPHAD 5085 — M R 55
R E & EYIA .

2) WH T Al(CuMgSi-T), . (T=Ag, As, Au, B, Ba,
Be, Bi, C, Ca, Cd, Co, Cr, Cs, Fe, Ga, Ge, Hf, Hg, In, Ir,
K, La, Li, Mn, Mo, N, Na, Nb, Ni, Os, P, Pb, Pd, Pt, Rb,
Re, Rh, Ru, Sb, Sc, Sn, Sr, Ta, Tc, Ti, TL, V, W, Y, Zn, Zr)
HIutE SR AMEBESREE, KHFE-15 kI/mol<
AHpx < 5 kJ/mol F1 6 < 6.6% H| # 1 Wl 7
Al(CuMgSi-T),-, 4 R & & i s il & 4 10 R o336 L
R ZHESIREIAHE AL 8 103 0 g K. e
O ZHUB/NTIZ BTN DGR EEEE Al & &
XS INTIT IR/« B 0 ZH0s /N T B HTR N o

3) Al(CuMgSi-T)-, TLua& & & Hi o Bsrfe
WA A4, HA AL(CuMgSi-T),, (T=In, Pd, Pt,
Sc, Zr) Tt &k & R e/ E T s ALS 20w
&4 Al(CuMgSi-T), . (T=B, Ba, Be, Bi, C, Ca, Cs,
K, La, N, Na, P, Pb, Rb, St, TL, Y) TLoc& &1k R MR
Re TR R 42 o

4) g LR ERFE T R T8 6 2808+
{180 408 5 v A A AT Y ] T B 7 6 S PR A,
N A R B R T T RERIR AR
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Thermodynamics study of Al-based high entropy quinary alloys

ZHANG Lei"?, CHEN Hong-mei’, TAO Xiao-ma’, OUYANG Yi-fang®

(1. School of Mathematics and Information Science, Guangxi College of Education, Nanning 530023, China;
2. College of Physical Science and Technology, Guangxi University, Nanning 530004, China;

3. Institute for Intelligent computing and simulation Research, Guangxi College of Education, Nanning 530023, China)

Abstract: High entropy alloys (HEAs) have attracted attentions due to their high hardness, high strength, good wear
resistance and corrosion resistance. HEAs generally have at least five principle elements, and the entropy of mixing can
be increased by the addition of elements. The solid-solution phase is formed in HEAs with a simple lattice structure. The
mixing enthalpies for multi-component alloys can be calculated by Miedema’s theory and geometrical model, and the
mixing enthalpy is important for the solid-solution forming. The mixing enthalpies of solid-solution for Al (CuMgSi-T),_,
(T=Ag, As, Au, B, Ba, Be, Bi, C, Ca, Cd, Co, Cr, Cs, Fe, Ga, Ge, Hf, Hg, In, Ir, K, La, Li, Mn, Mo, N, Na, Nb, Ni, Os, P,
Pb, Pd, Pt, Rb, Re, Rh, Ru, Sb, Sc, Sn, Sr, Ta, Tc, Ti, TL, V, W, Y, Zn, Zr) quinary alloys have been calculated by
Miedema’s theory and the extend geometric model, and the forming composition ranges of Al (CuMgSi-T),_, system
have been predicted according to the criteria of the mixing entropy and the atomic size differences. The calculated
enthalpy of mixing indicates that some compositions for Al,(CuMgSi-T),-, systems are easy to form HEAs. The method
of predicting the composition forming ranges for HEAs by the criteria of the mixing enthalpy and parameter ¢ is simple,
the predicted mixing enthalpies could be benefit to the investigations of composition design for HEAs.
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