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Fig. 1 Morphology (a) and particle size distribution (b) of

Ti-6Al-4V powders processed by EIGA method (insert graph is

enlarged image of powders)
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Table1  Processing parameters used to fabricate gradient

structure parts
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Processing aser - Scanning ner.gy Relative
arameter power/ speed/ density/ density/%
P w (mm-s ") (J'mm ) ty/e

S 275 1100 83.3 99.02

Ml 50 850 19.6 87.67

M2 100 1450 23.0 91.93

M3 250 250 3333 95.26
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Fig. 2 Scanning strategy of laser
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Fig. 3 Schematic diagram of shear specimens: (a) Upper

porous layer; (b) Lower porous layer; (c) Vertical sample
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Fig. 4 Schematic diagram of tensile specimen (Unit: mm):
(a) Dimensions; (b) Cross-section diagram of gauge; (c) Picture

of tensile sample
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Fig. 5 Optical microstructures of gradient sample A in middle part(a), top part(b) and bottom part(d) and details of middle part(c)
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Fig. 6 Optical microstructures of gradient sample B in middle part(a), top part(b) and bottom part(d) and details of middle part(c)
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Fig. 7 Optical microstructures of gradient sample C in middle part(a), top part(b) and bottom part(d) and details of middle part(c)
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Fig. 8 SEM images of gradient samples A and C: (a), (d) Top part; (b), (¢) Middle part; (c), (f) Bottom part
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Fig. 9 XRD patterns of gradient samples A and C in top part and bottom part: (a) Sample A; (b) Sample C
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Fig. 10 Vickers hardness of gradient structure samples in

upper and lower dense layers

22 FRELZAMESH

Bl 11 B A BUGERAN[R] B ] 5508 2 A
ZALZMEYIRRE, KU EE N ZLEE R
TE 77 AR B DR E e/, AU 72.3 MPa,
JEME G R, UZLUEE NEUEEE B, 5
VIst N 180.0 MPa, f3EIKMEIES: XA R E
BEBURIER, BIVISREE N 147.8 MPa. B, 7KFAi
BB RIE B E M2 LRSS A ORI, BT
B EMZ L2 B )R TR, SRR
SHTH, FRARMOENRIMERE, T B A B RUE I RS A
ROR— B H A G RORESTF, Frolbdh “ =01R " 45t
RV 80 Re FH A 31 10 A B DL o I R



2955 111 BAEW, 2 SLM RIE Ti-6A1-4V & 4 B 45 M 4L 4R 7 2 R 2495
200 7 :
— Uppet potous layer Tensile strength
—— Lower porous layer
150 — Vertical sample
£
= & S
2 100+ = =
g 2 s
7 £ 7
[75]
50+
0 0.2 0.4 0.6 0.8 1.0

Displacement/mm
B 1 ARBIERT A BGRB8
Fig. 11 Shear strength of A-type structures with different

forming sequences
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Fig. 13 Tensile fracture morphologies of gradient structure sample B: (a) Overall appearance; (b) Porous layer; (c¢) Interlayer; (d),

(e) Enlarged images of dense and porous layers, respectively
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Fig. 14 Tensile fracture morphologies of gradient structure sample C: (a) Overall appearance; (b) Porous layer; (c) Interlayer;

(d), (e) Enlarged images of dense and porous layers, respectively
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Fig. 15 Compressive stress—strain curves of gradient structure
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Fig. 16 Compression fracture morphologies of gradient sample A: (a) Porous layer; (b) Dense layer; (c), (d) Enlarged images of

dense and porous layers, respectively
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Fig. 17 Compression fracture morphologies of gradient sample B: (a) Porous layer; (b) Dense layer; (c), (d) Enlarged images of
dense and porous layers, respectively
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Fig. 18 Compression fracture morphologies of gradient sample C: (a) Porous layer; (b) Dense layer; (c), (d) Enlarged images of
dense and porous layers, respectively
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Microstructures and mechanical properties of
Ti-6Al-4V graded structures manufactured by selective laser melting

HUANG Chuan-shou', XIAO Zhi-yu', WANG Zhen', HUANG Jia-hao?, ZHU Quan-li'

(1. National Engineering Research Center of Near-Net-Shape Forming for Metallic Material,
School of Mechanical and Automotive Engineering,
South China University of Technology, Guangzhou 510640, China;
2. Guangzhou Zoltrix HIP Material Limited, Guangzhou 511470, China)

Abstract: A sandwich model of gradient structure was designed in this paper. The upper and lower dense layers were
formed using optimal processing parameters. Three kinds of structure A, B, C with different porosity of middle layer were
produced at different laser energy density of 19.6, 23.0 and 333.3 J/mm®. The microstructures and mechanical properties
of gradient structures were investigated. The results show that the pore in structure A is interconnecting pores without
obvious orientation. Many small isolated pores and a small amount of interconnecting pores exist in structure B. All pores
in structure C with nearly circular cross-section are isolated holes. As a result, structure A has unobvious columnar grains
due to the high porosity, while structure B contains some discontinuous prior  columnar grains. Structure C is consisted
of coarsened equiaxed grains rather than columnar grains. The shear strength between lower dense layer and porous layer
of samples with structure A is only 72.3 MPa. And it appears cracking in the forming process. Tensile strength of samples
with structure B still reaches 979.1 MPa combined with elongation of 4.54%. Tensile strength of samples with structure C
is 1121.7 MPa, and the elongation is as high as 7.05%. The modulus of structure A, B and C are 19.7, 31.5 and 43.7 GPa,
respectively.

Key words: selective laser melting; Ti-6Al-4V; gradient structure; microstructures; mechanical properties
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