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Abstract : A new simple analytic e mbedded atom model including a modified term , which has previously been
successfully applied to the atoms in the FCC and BCC crystal systems , is now extended to the HCP structure .
The model parameters are determined for HCP transition metals Co, Hf, Re, Ru, Sc, Ti, Y and Zr with ide-
al ¢/ a ratios. The model is fitted to the lattice constants, cohesive energy , vacancy formation energy , elastic
constants and is able to reproduce the experimental data quite well . The structure stability of real HCP, BCC
and simple cubic is discussed, the formation energy of divacancy in the base plane and in different planes are al-
so calculated, and the divacancy is found to be not bound.
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1 INTRODUCTION

Daw and Baskes''! have developed a so
called e mbedded atom method( EAM) . It has
been successfully applied to studies of pure met-
"1 Daw , Foiles and Baskes!?!
have recently reviewed the literature . More re-

als and alloys[1

cently many-body potentials have been developed
for hexagonal close-packed ( HCP) metalst ® 78 .
These potentials do not include angular depen-
dent term, hence a nom physical e mbedding en-
ergy is required for metals with a negative
Cauchy discrepancy . Baskes and Johnson'°! have
recently developed a modified embedded atom
potential including angular dependence. The
model is more complicated in the procedure of
determining the parameters and has little appli-
cations, especially for alloys of HCP transition
metals .

In order to obtain a simple EAM model,
which can fit a negative Cauchy discrepancy , the
angular dependent term must be included. The
model of Baskes and Johnson'®! is complicated in
the calculations . So, we proposed a simple EAM
model with a modified term in the equation of
energy . The introduced modified term is used to
describe the effect of angular dependence .

2 MODEL

The simple analytical e mbedded atom po-
tentials proposed by Ouyang et al" have been
previously applied to studying the BCC and FCC
[10=12] "1t has been extended to

transition HCP metals . According to the proce-
l[10]

metal syste ms

dure of Ouyang et a , the energy of a given

atom is taken as
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E= F(p+5 LA+ M(p) (1)

p= 2if(ru) (2)
p= 2f(rw (3)
where  F( ) and #(r) are embedding energy

and effective two body potential respectively,
f(r) is the electron density distribution func-
tion, r, is the separation distance to the mth
neighbor, M( p) is the modified term that was
introduced by Ouyang et al''® on the base of the
following considerations .

On one hand, according to the conventional
EAM concept , the electron density of an atom is
of spherical symmetry . As we know , of the elec
trons out of atomic nuclei, only s-electron has
spherical sy m metric distribution. The other elec-
trons have a nomspherical symmetric distribu-
tion. That means that an angular dependence
must be considered as pointed by Baskes et
al' | and some modification is necessary . As
pointed by Baskes et al'™3 | the angular depen-
dence is related with the square of atomic elec
tron density distribution function. So the modi-
fied term is the function of the square of atomic
electron density function to descibe the angular
dependence. On the other hand, in the proce-
dure of conventional EAM, the host electron
density at the position of atom i is a superposi-
tion of the atomic electron densities of the neigh-
bors of atom i. This assumption is also simple in
an extent for transition metals , and some modifi-
cation is also necessary . The introduced modified
term is considered as description of the effects for
above two aspects on the total energy of an
atom .

To obtain an EAM model, the form of
F(p, f(r), #4r) and M(p) must be deter
mined. In the present consideration, the e mbed-
ded function F ( p) and f( r) take the same

forms as those of Johnson!'#!31 .
F(,())=-F01-n1n£“l£ (4)
B
R (5)

where @, feare, respectively, the values at e-

quilibrium for pand fs Fo, B and n are the

model parameters. The effective two body po-

tential #( r) is taken as
2 4

+

r
¢(7) = k0+ kl 71

12
"

ks (6)

ry is the value of separation distance

7

where

from the given atom to its nearest neighbor at

equilibrium , k;(i=0,1 ,2,3) are parameters .
The modified term is taken as

2
M(p) = %f-l exp -lf-l

2

(7)
where  p. is the value of p at equilibrium, ais
the model parameter.

The parameters mentioned above are deter-
mined by fitting the model to the cohesive ener
gy, vacancy formation energy , lattice and elastic
constants . For HCP metals , which have five in-
dependent elastic constants C;, GC,, Gj,
Gi3, Cyy, all in Voigt notation. To obtain the
relationship between the linear elastic constants
( C,-jk,) and the EAM parameters, an infinitesi-
mal homogeneous strain are applied to a perfect

(161 and the elastic

pure crystal at equilibrium
constants are given as follows :
/
QGCju = Biju+ F (@) Wi +

F'(@) VijVu+ M (po) Xiu +

M(pe) YijYu + Eiu (8)
with
Vimi ¥ mj
Vii= 2f(r) e (9)
Z ’ Vi Vi
Yij = f ( rm) - (10)
/ f ()
Wi = 2 FCra) -
Vi ViV ke ¥ iml
P (11)
"'m
1 , # (1)
B = 5 2 #lrw - — )
Vi ViV mkc ¥l
2 (12)

rm

Xija = 2 2fCr) f(ry) +
2 £(r) £ (1w

rm

2F(r.) f(ry -
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i o ik Tl (13) 6n #(n) +3nd(rn) =0 (20)
2 e e
r RE(n) + 13f(n)+

m

Egu = 2 (1/2) #(r,) +

F'() f/(ra) +
2 M (po) fCra) f/Cra)| Dy (14)

and with
rzmi .
D,-jk,=Tm, i=j=k=1
Vi 7 ke .
D,-jk,=27rm, i=j=1#ZKk
Dij = 0, i=jZxk=1
Dij = 0 i=j#zk#£Il
2 2
D,-jk,=%rmr"”,i= k#j=1
Dijk,=%%,i= k#zj#I
(15)
where the second subscripts i, i k, 1of r,

represent the Cartesian components of the posi-
tion vector for the mth atom relative to a given
atom at the origin. The equilibrium condition is

Y LA+ F ) f () +

m

2M (@) fCra) f(r) 755 <0 (16)

(i=1,2,3;j=1,2,3)

It should be noted that E,-jk, vanishes when
the equilibrium condition is used. Considering
the form of the e mbedding function and modified
function, F'( @) =0 and M'(p.) =0, the equi-
librium condition of Eqn. (16), therefore,

changes to
/ Vi U mj
S A () T = an

Also, from Eqn.(8) , the elastic constants are
expressed in the following :

QCj = Biju + F' (@) ViiVia +

M(pe) Yi; Yy (18)

For simplicity, we postulate that HCP
structure has ideal ¢/ a ratio and only the first
two neighbors are included. Then the vacancy
formation energy can be expressed as follows :

6 #(r) +34r) =- E; (19)

From Eqns.(17) and (18) , we obtain the
following equations :

raf'(ry) =3 2Cy (21)
SR (n) +215%(n) -
nAn) =620GC, - Gy
(22)
2F (@l anfin) +2nf ()] +
2 M (pol 81 fCr) f(n) +
41, f(r) f/( )| ? = L3 G, - G))
(23)
where the primes indicate the derivative to its
argument. E;is the vacancy formation energy .
Then the parameters k;(i=0,1,2,3), Fyand
n can be determined by the following equations ,
which are derived from Eqns.(1) and (19) ~
(23) .

1
kg = - ; E; +
17437 QCyy - 8470 2( G, - Cy) 24
42840 (24)
. 2250 2( G, - G,) - 5067 2C,,
L= 9520
(25)
161 QC44 - 65 'Q( C11 - CIZ)
2= 1020 (26)
80 2( Gy - Gy) - 104 2Cy,
3= 5355 (27)
Fo = E.- E; (28)

as for the parameter n, it is e mpirically taken as

_ JFM% -
n = A[v;Ef (29)

where E.is the cohesive energy, £ the atomic
volume at equilibrium , B the bulk modules, gis
e mpirically taken as 6 for all transition metals,
though it is certain that the exact value of gcan
be obtained by fitting Eqn.(5) to the results of
Cle menti and Roetti'!”1, A is
2 Gy

T (30
As for f.in Eqn.(5) , for pure metal, it is can-
celed. We take it as one. Then the parameter a
of Eqn.(7) can be determined as follow

9 23C,- Cy)-2n*F
a = ( 12 ) n 0[7; (31)

16

The input physical para meters needed in de-
termination of model parameters are listed in
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Table 1 . There are seven parameters k;( i =0,
1,2,3), Fy, nand a, which can be determined
from the Eqns.(24) ~ (31) using the input
physical parameters. They are listed in Table 2 .
Therefore the present model for the transition

HCP metal is complete .
3 RESULTS AND DISCUSSION

We have given the complete EAM model for
transition HCP metals as above. The effective
two body potential of Tiis shown in Fig.l andis
cut off with a cubic spline within a range , which
begins at the position of r =1 .05 r,( r,is the
distance of the second neighbor) and ends at the
position of the third neighbor. The procedures of
cutoff for the potential and the electron density
functions are the same as those of Ref.[3]. It
can be seen that the potential between the first
neighbor and the second neighbor is smoother

than that of Pasianot and Savind’].

The embedding function of Ti is demon-
strated in Fig.2 . This is the typical shape of the
e mbedding function of Johnson!'*!. The total
energy changing with the distance between the
nearest neighbors for Ti is given in Fig.3. For
comparison, the result of Rose’ s equation[lg] is
also given. One can see from Fig .3 that the pre-
sent results agree well with those of Rose within
the first neighbor distance . Beyond this range,
the result of Rose is higher than that of us.

The model has been used to calculate the e-
lastic constants of pure HCP metals with real c/
a ratios. The calculated results are given in
Table 3 . Only three elastic constants G, , C,,
and Cy4are used as input parameters . The calcu-
Ci,, and Cy4 have
differences with experiments because the real c/

lated elastic constants Cj; ,

a ratios are used, but the agreement is very
well. The calculated values of C; are bigger
than those of experiments, and the calculated
Cs3 are smaller than those of experiments. The

Table 1 Input physical parameters

Co Hf Re Ru Sc Ti Y Zr Ref .
a 2.497 3.195 2.760 2.706 3.308 2.951 3.647 3.231 [19]
c 4.069 5.051 4 .458 4.282 5.267 4.679 5.731 5.148 [19]
Ec 4 .41 6 .35 8.09 6.74 3.89 4 .87 4 .41 6 .36 [20]
E; 1.35 1.80 2.30 1.85 1.15 1.50 1.25 1.70 [4.9]
G, 1.8443 1.1310 3.7500 3.1567 0.6200 1.0500 0.4867 0.9003 [20]
G, 0.9943 0.4810 1.8062 1.3747 0.2480 0.5120 0.1827 0.4623 [20]
Cys 0.4440 0.3480 1.0060 1.1310 0.1730 0.2910 0.1520 0.2090 [20]
B 1.172 0.678 2 .281 1.907 0.352 0.656 0.258 0.633 [20]

Note : Lattice constants a and c are in angstrom , cohesive energy E.and vacancy formation energy

E;in eV and elastic constants C,;, C,, Cy, and bulk modules B in e V/cubic angstrom .

Table 2 Calculated model parameters

Co Hf Re Ru Sc Ti Y Zr
ko - 0.011 0.093 0.114 1.261 - 0.206 0.046 -0.081 -0.224
k, -0.389 -0.705 -1.118 -2.455 -0.104 -0.489 -0.299 -0.180
k, 0.175 0.302 0.513 0.882 0.090 0.206 0.152 0.118
ks 0.045 0.066 0.140 0.063 0.055 0.042 0.052 0.058
F, 3.06 4.550 5.790 4.890 2.740 3.370 3.160 4.660
n 0.504 0.467 0.626 0.553 0.478 0 .445 0.435 0.502
a 0.098 -0.015 0.100 0.018 - 0.030 0.051 - 0.043 0.030

k(i=0,1,2,3), F,, aare ineV; n is dimensionless .
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Fig.2 Embedding function of Ti

discrepancies maybe arise from the internal re-
laxation of HCP structure for its nomcentral
symmetry . In the present calculations, these re-
laxation effects are not included because the re-
laxation produce less ten percent changes on the
results . It can be seen from that the agree ment
bet ween the calculations and experiments for G
and Gs;is, in general , reasonable .

On the other hand, the model has been
applied to calculate the difference of energy be-
tween the ideal HCP and BCC structure. The
results are in general agreement with the
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Fig.3 Total energy of Ti calculated with
present model and with Rose’ s equation

experimental data available . It is noted that the
real HCP is more stable than ideal HCP . One al-
so can see that the ideal HCP is more stable than
BCC and simple cubic. This indicates that the
present model can reproduce correctly the stabili-
ty of structure . From the Table 4, one can see
that the present results are in general agree ment
with those of Baskes et al'®! .

The divacancy formation energies for HCP
transition metals considered with real ¢/ a ratio
have been calculated and are also presented in
Table 5. It is noted that the present results are
not as accurate as in the vacancy case, because
the relaxation of atoms around the divacancy has
also not been taken into account, thereby the
lattice has larger distortion from perfect lattice .
The calculations indicate that the binding ener
gies of divacancy, which are in the same base
plane and in different planes, are all negative .
Therefore the divacancies are not bonded. The

results agree well with those of Baskes et al®l .
4 CONCLUSION

A simple analytical EAM model for transi-
tion HCP metal has been developed, which in-
cludes a modified term. The model parameters
are obtained by fitting the cohesive energy, va-
cancy formation energy, lattice constants, and
some elastic constants. The model was used to
calculate the elastic constants , vacancy formation



Vol.9 Ne. 3 Simple analytic e mbedded atom potentials for HCP metals © 591 -

and divacancy binding energies , and the energy thors indicate that the present model is success-
differences between different structures. The a- ful .

greement between the calculations and the ex- The calculated for mation energies for vacamr
perimental data available and those of other au- cy and divacancy are shown in Table 5. The

Table 3 Calculated and experi mental elastic constants , (e V/ cubic angstrom)

Co Hf Re Ru Sc Ti Y Zr
G, 1.8375 1.0893 3.6862 3.1282 0.5919 1.0095 0.4617 0.8612
1.8443 1.1310 3.7500 3.1567 0.6200 1.0500 0.4867 0.9003
a, 0.9903 0.4643 1.7746 1.3523 0.2387 0.4897 0.1756 0.4435
0.9943 0.4810 1.8062 1.3747 0.2480 0.5120 0.1827 0.4623
a, 1.1066 0.5284 1.8721 1.6461 0.2492 0.5564 0.1973 0.4720
0.6943 0.4120 1.2870 1.0497 0.1840 0.4120 0.1257 0.4830
G, 1.8339 1.1492 3.7878 2.9323 0.6604 1.0789 0.5089 0.9578
2.0933 1.2300 4.2690 3.8997 0.6990 1.1320 0.4807 1.0373
Cus 0.4459 0.3704 1.0302 1.1531 0.1873 0.3072 0.1673 0.2244
0.4440 0.3840 1.0060 1.1310 0.1730 0.2910 0.1520 0.2090

Note : The first line is the calculated results and the second line is the experimental datal*! for Cu;
and the same for G, , C;, Gyand C,, .

Table 4 Calculated and experimental values of lattice stabilities (e V) for
HCP, BCC and SC (simple cubic) crystal structures relative to HCP with ideal ¢/ a

Ele ment HCP BCC SC
Calc . Baskes! * Calc . Baskes! * Exp 121 Calc . Baskes! *
Co - 0.00001 - 0.0000 0.092 0.241 - 0.39 0.59
Hf - 0.00462 - 0.0059 0.135 0.064 0.059 0.52 0.51
Re - 0.001 09 - 0.0005 0.250 0.303 0.292 1.13 0.94
Ru - 0.00572 -0.0124 0.282 0.268 0.265 0.57 0.78
Sc - 0.00208 -0.0016 0.068 0.248 - 0.41 0.58
Ti - 0.00248 -0.0071 0.096 0.075 0.070 0.35 0.41
Y - 0.004381 - 0.0075 0.082 0.300 - 0.39 0.68
Zr -0.00212 -0.0105 0.088 0.061 0.076 0.50 0.45

Table 5 Unrelaxation vacancy formation and divacancy binding energies (e V)

E; E,
I plane Nonr base- plane
Calc . Baskes! * Exp .[**°]

Calc . Baskes'*! Calc . Baskes! *
Co 1.39 1.48 1.35 -0.1073 - 0.47 -0.1413 - 0.46
Hf 1.83 2.02 1.80 -0.1636 -0.21 -0.2181 -0.18
Re 1.90 2.49 2.30 -0.1537 -0.63 -0.2636 - 0.61
Ru 1.17 2.11 1.85 -0.1326 -0.18 -0.2130 -0.09
Sc 2.39 1.28 1.15 -0.1125 -0.26 -0.1462 -0.25
Ti 1.53 1.80 1.50 -0.1372 -0.13 -0.1724 -0.11
Y 1.27 1.39 1.25 -0.1271 -0.06 -0.1611 -0.03
Zr 1.75 1.93 1.70 -0.1238 -0.53 -0.1850 -0.52
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calculated energies are those of a vacancy in crys-
tal with real ¢/ a ratio. It is found that the va-
cancy formation energy is about 0.1 eV higher
than the experimental data. Note that the local
atomic relaxation around the vacancy has not
been taken into account, so, we can say that
these unrelaxed results are in general agree ment
with those of experi ments'*! and those of Baskes

et all® |
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