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Abstract: In asymmetric rolling (ASR) the circumferential velocities of the working rolls are different. This yields a complex
deformation mode with shear, compression and rigid body rotation components. The main microstructural modification is on
crystallographic texture, and, for aluminium alloys, this may improve the deformability after recrystallization. This work correlated
the process variables, thickness reduction per pass (TRP) and velocity ratio between the upper and bottom rolls, with the texture
development and the plastic properties after annealing. Finite element (FE) simulations were performed to quantify the influence of
the strain components. Experimental data on texture, and plastic anisotropy were analyzed. In the sheet centre a crystallographic
rotation of the compression components about the TD (transverse direction) axis was obtained, which yielded the development of
{I11}//ND (normal direction) texture components. On the surfaces the local variation of the velocity gradients caused an extra
rotation component about ND. This yielded the increment of rotated cube components. After annealing the main texture components
at the sheet centre were maintained and the texture intensity decreased. The planar anisotropy (Ar) was reduced but the normal
anisotropy and deep drawability obtained by the Erichsen test were similar for all conditions. The most favourable reduction of Ar
was obtained at a velocity ratio of 1.5 and TRP of 10%.
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1 Introduction

One of the limitations for a wider commercial
application of aluminum alloys in automobile sheet
panels is their lower drawability in comparison to steels.
Rolled and recrystallized sheets are
characterized by lower normal anisotropy (ry, usually
0.8), which yields poor resistance to thinning (steels have
r>1), and higher planar anisotropy (Ar, usually around
0.3, when the ideal value is 0), which induces earing [1].
The most likely rolling texture is composed of the
p-fibre (main orientations include Brass {011}(211),
S {123}(634) and Copper {112}(111)), which evolves to
the cube {001}(100) plus Goss {011}(100) orientations
after annealing [2]. A strong cube orientation is

aluminium

responsible for the poor drawability, but more balanced
strength and elongation properties may be achieved by a
random [3] or a {111}//ND (normal direction) texture [4].
This arrangement can be obtained if shear strain is
imposed throughout the entire sheet thickness [5,6].
Asymmetric rolling (ASR), is a modification of the
conventional rolling process (SR), in which the
circumferential velocities of the working rolls are
different. This technique has been extensively studied in
the past decade because it has the advantage of reducing
rolling torque and pressure and an improvement of the
rolled plate shape at velocity ratios between the upper
and bottom rolls up to 1.2 [7]. It also imposes through
thickness shear plus compressive strains, and introduces
rigid body rotation components. This changes the
deformation texture from pure compression to shear and
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rotation, a condition which generates lower texture
intensity and greater microstructural refinement [8,9].
Texture modification is more efficient when velocity
ratios higher than 1.4 are applied [10]. Texture
modification improves the drawability values in
aluminium alloys, a behaviour which has been observed
by many authors [3—10]. Moreover, the technique has
also been investigated as a manner to increase the
mechanical isotropy of hexagonal metals such as
magnesium and titanium [11,12]. However, ASR texture
is very sensitive to processing parameters and different
results are reported. For instance, both the ideal shear
texture [4,6] and the FCC plane strain compression
texture rotated about the sheet transverse direction (TD)
axis [13—15] were observed. The main process
parameters that affect the crystallographic orientation are
friction coefficient, velocity ratio, thickness reduction per
pass (TRP) and gap geometry.

The effect of asymmetry is to reduce the f-fibre and
accentuate the shear components across the sheet
thickness, but it was also observed that the effect of
friction, although quite hard to quantify, may be more
determinant [10]. When the friction coefficient is high,
both SR and ASR induce significant shear strain close to
the sheet surface and yield shear textures [5,10]. This
behaviour may be controlled by changing the roughness
of the roll surfaces and the type of lubricant used in the
process. For example, UTSUNOMIYA et al [16]
achieved asymmetry under different lubrication
conditions between top and bottom rolls. Moreover, the
available experimental data show that ASR does not
create the ideal shear texture if the sufficiently high
friction is absent. SHORE et al [6] calculated that a
minimum friction coefficient of 0.3 is necessary to
transmit shear strains to the sheet. For example, SIMOES
et al [17] obtained no difference in texture after ASR at
low friction conditions and a velocity ratio of 1.4;
WRONSKS and BACROIX [13] obtained a 8° rotation
at a ratio of 1.5, while LEE et al [5] obtained a 15°
rotation for the same ratio.

At a constant friction coefficient, the rotation of
texture increases with the velocity ratio [6,13]. For the
velocity ratios below 1.15, WRONSKI et al [14]
observed an increase of cube texture, and a decrease of
the p-fibre components and above 1.15 the shifted brass
component was stronger. For warm ASR the {111} fibre
appeared for higher velocity ratios; the average texture
intensity was significantly lower than that after cold
rolling and the Cube and rolling components were
reduced.

At a velocity ratio of 2, SIDOR et al [18] achieved
shear textures through the sheet. They observed that the
intensity of the shear texture developed after a sequence
of ASR processes depends on the shear direction and

TRP. Varying the initial thickness and the initial
condition(annealed or work hardened) also changed the
depth of the shear region. Therefore, decreasing the TRP
should yield higher equivalent strains and higher shear
strain components.

MA et al [19] studied the effect of TRP at a velocity
of 1.25 and observed that smaller reduction rates yielded
higher equivalent strains and higher shear strain
components in the sheet centre, which in its turn
promoted an increment of shear bands and a higher
microstructural refinement when higher reduction rates
are employed. The observation of deformed finite
element meshes showed that the distortion caused by
additional shear deformation in the centre layer was
smaller than that on the surface. SIDOR et al [18] also
observed that low thickness reductions (<10%), applied
in the ASR process, inhomogeneous
distribution of deformation with pronounced shear
localization within sub-surface regions.

On the other hand, GAO et al [20] calculated that
the increment TRP increases the rolling force and the
depth of shear deformation. LEE and LEED [21] could
not differentiate the resultant texture on the surface of
ASR samples deformed with different TRPs, and
observed that at TRP of 5% and 50% grain refinement
was maximal, but less efficient for intermediate values.
Moreover it is not clear how this parameter influences
the rigid body rotation that actuates the sheet’s central
volume.

From the review mentioned above, it is still unclear
in which conditions either shear or rotation takes place,
and which is the influence on further annealing. Hence,
the objective of this work is to correlate TRP and
velocity ratios at high friction coefficients with the
texture development and the plastic properties after
annealing. Finite element (FE) simulations were
performed in order to quantify the influence of shear and
rigid body rotation in the process, and experimental data
on texture, annealing texture and plastic anisotropy were
analyzed.

causes an

2 Experimental

The initial material, a 7 mm-sheet of AA1050 alloy
obtained by the roll casting process, was annealed at
350 °C for 1 h prior to SR and ASR. Its chemical
composition is given in Table 1.

In SR, the specimens were cold rolled at
room temperature in a FENN 051 rolling mill, using

Table 1 Chemical composition of AA1050 aluminium alloy
used in this work (wt.%)

Si Fe Cu Mn Mg Zn Ti Al
0.081 0.185 0.012 0.003 0.003 0.002 0.012 Bal.
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conventional lubrication and 10% reduction per pass up
to final thickness reduction of 70% was applied.

The ASR was performed on 5 HP rolling mill, with
two different roll diameter ratios of 1.5 and 2, the upper
roll being the largest. The total thickness reduction was
50% for alloy samples. The angular speed was 23 r/min.
The roll surfaces were machined producing a grooved
surface, in order to avoid slip during the process and
thus imposing the maximal friction. No lubricant was
used.

The FE simulation was carried out using the
DEFORM software. Sheets were considered as being
elasto-plastic and the rolls perfect rigid bodies,
respectively. The constitutive equation used was the
Hollomon’s equation with the constants provided by the
software (0=179¢"**, MPa) and the elastic modulus of
71 GPa. The plane-stress model was applied, forcing
symmetry in the central plane consisting of the RDXND
and an adhesive frictional condition with the friction
coefficient (m) of 0.9 was assumed. The FE simulation
was compared with the change in shape of marks
engraved at the sheets lateral. From the simulations,
discrete values along the sheet thickness for shear strain
7.. and compression strain ¢,, were calculated.

The numerical simulations consider the physical
data of the rolling mill and the model symmetry; the
results are displacements, strain and stress fields. To
obtain the rigid body rotation of each element of the grid,
a program routine was written using the procedure
suggested by CODA [22] and BONET et al [23]. The
initial (4,) and final (A,) spatial positions after the
rolling process are mapped and give the known gradient
deformation tensor F:

F=4,4," (1)

The polar decomposition theorem of F was used to
obtain the orthogonal tensor O which is free of stretch
and distortion influence and whose components depict
only the rigid rotations of one point on a continuum
media, and the tensor F is given by

F=QU (2)
U=C=F'F

where C is the right Cauchy—Green tensor and U is the
right stretch tensor. With F and the inverse U tensors, the
orthogonal tensor @ is obtained by

O=FU' (3)

From Q@ the rotation about the TD was calculated
considering the projection of the rotation on the
symmetry plane located in the middle of the sheet and
having the normal RD and ND directions as the reference
axis.

The experimental samples and numerical

simulations were identified by four characters: the first

two related to the roll velocity ratio (10 for the SR and
15 or 20 for the ASR corresponding to velocity ratios of
1.5 and 2) whilst the third and fourth characters are
related to the TRP (5% or 10%).

After rolling the samples were annealed at 350 °C
for 1 h and quenched in water.

The microstructure was revealed by conventional
polishing techniques followed by anodizing (2.5% HBF
solution, 20V, 3—-5min); optical microscopy was
performed under polarized light. To characterize the
degree of heterogeneity present in the sample, the texture
was measured both on the upper sub-surface and on the
centre of the as-rolled samples. After annealing only the
centre of the sheets was analyzed. The (111), (200) and
(220) pole figures, together with background and
defocusing curves for further correction, were measured
by X-ray diffraction on a Philips X-Pert MPD
diffractometer located at Brazilian Nanotechnology
National Laboratory using Co K, radiation.

The orientation distribution functions (ODFs), were
calculated from the three incomplete pole figures by
using the series expansion method according to
BUNGE [24] with the MTEX [25], routine running on
the MATHLAB software. The orthorhombic symmetry
was used for the SR samples and the triclinic symmetry
for the ASR samples.

From the ASR sheets with approximately 3 mm in
thickness, tension miniature samples with gauge lengths
of 7 mm and 3 mm in width and 50 mm-diameter disc
samples were cut by spark erosion. The rough surfaces
were removed by grinding and the surface was finished
with 1200 mesh abrasive paper, reducing the final
thickness to 2 mm.

Tension tests were performed in an INSTRON
universal testing machine. The elongation and lateral
contraction were followed by an optical extensometer.
The tests were performed at room temperature under a
nominal strain rate of 1x107 s, The plastic anisotropy
was calculated from the contraction ratios between the
width (&) and the thickness (g) directions (r=ey/¢,)
measured on samples cut at 0°, 45° and 90° relative to
the extrusion direction in the plane of the sheet.

The conventional average parameters of the normal
and planar anisotropy are expressed by the 7, and the Ar
values, respectively:

Ty + 21y + 1
= 0 :5 90 (4)

Ty =215 + 1y
2

Ar = (5)

Finally, in order to evaluate the deep drawing
capability of the ECAP-processed samples, Erichsen
tests following ASTM E643 were performed on the
disc-shaped samples.
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the surfaces and a more accentuated deformation close to

3 Results the smaller roll, where the stress due to the smaller
contact area is higher (Fig. 1(b)). Compressive strains are

Figure 1 shows the results of the FE simulation. The similar to all ASR samples, but as expected TRP of 5%

FE grid is distorted towards the rolling direction produces greater gradients between surface and sheet
(Fig. 1(a)), indicating the effect of the different roll centre (Fig. 1(c)). Differences between shear strains
diameters. The total equivalent strain (Fig. 1(b)) has due to the variation of diameter ratio and TRP are
similar distribution for all four ASR samples: a gradient greater than those for compression strains. TRP of 10%
with lower strains at the sheet centre, higher strains on was more effective in transmitting shear than TRP of
3
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Fig. 1 Strain distribuition in ASR samples: (a) Example of equivalent strain distribution obtained by FE simulation; (b) Calculated
profiles of equivalent strain &.; (c) Calculated profiles of compression strain ..; (d) Calculated profiles of shear strain y,.;
(e) Calculated profiles of shear to compression ratio y,./¢..; (f) Projection of rigid body rotations about TD axis (Sample notation: the
first two numbers refer to the asymmetry ratio and the third and fourth refer to the TRP)
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5%, and increasing R/R, from 1.5 to 2 increases the
shear strain (Fig. 1(d)). However, when the relative
contribution of shear and compression y,./c,. (Fig. 1(e))
was analyzed, it is clear that with exception of the 2010
sample the compression is twice as strong than the shear
and thus is responsible for the major contribution in the
deformation. The simulation in high friction conditions
predicted a range of rigid body rotations varying from
20° to 40° (Fig. 1(f)) which is higher than the one
calculated under a friction coefficient of 0.3 by
UNIWERSAL et al [26,27]. It also presents a gradient
with lower intensity at the sheet centre and higher
rotational field close to the rolls. Opposite to the shear,
the predicted rigid body rotation on the surfaces was
higher for TRP of 5% than for TRP of 10%.

Figure 2 shows the results of texture measurements
on the surface and the center of the ASR sheets. Upper

Bianca. Delazari ZANCHETTA, et al/Trans. Nonferrous Met. Soc. China 29(2019) 2262-2272

and bottom surfaces yielded similar componentes,
therefore only the results from upper surface are
presented. A comparison of the texture intensities is
presented in the dicussion section. The {l111} pole
figures are ploted with the RDxND reference axis to
describe the rotation of the compression components
about TD. On the CR samples the surface and center
present the compression components copper {112}(111)
and strong brass {110}(112), on the surface some
deviation from these components due to suface fricion is
also present.

The ASR samples show very different textures on
the surface and center. On the surface, it presents shear
texture due to the high fricion coefficient and fibres
(100)//ND, (112)//ND, (111)//ND and (011)//ND, the
rotation took place about ND rather than about TD. The
cube and rotated cube components increased when TRP

/()
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Fig. 2 ODFs for ¢,=45° of cold-rolled samples using SR (1010) and ASR with roll diameter ratios of 1.5 and 2, and TRP of 5% and
10% (Pole figures use ND and RD as reference asxis. Contour levels of the pole figures and ODFs are described in the scale bars)
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was reduced from 10% to 5%. In the sheet center,
rotation of the compression components, shift of the
Brass orientations in the @ direction and strengthening of
(112)//ND orientations were observed.

After annealing (Fig. 3), the SR sample shows a
transition to the cube texture, whereas the ASR maintains
most of the deformed components, but with increased
spread. The most intense components in samples 1505
and 2005 were rotated Goss {110}011) and rotated
Cube {001} (110), in sample 1510 the (111)//ND fibre
was more intense, and sample 2010 presented mainly the
rotated cube and other (001)//ND fibre orientations with
weak intensities in the (111)//ND fibre.
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Fig. 3 ODFs sections at ¢,=45° of annealed samples (Contour
levels are described in the scale bars; A: Annealed sample)

Figure 4 shows the typical microstructures of the
as-rolled and annealed samples and the measured values
of grain size and hardness are achieved after the heat
treatment. After ASR the microstructure consists of
highly elongated grains partitioned by shear bands
induced by the asymmetry. The equivalent strains for
all variables are very similar, as can be seen in Fig. 1(b).
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Fig. 4 Optical micrographs of ASR sample (a) and sample after

annealing at 350 °C for 1 h (b), and grain size (c), hardness (d)

and drawing test (Erichsen) (e) achieved after annealing
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After annealing, all samples showed grain sizes around
30 um and harness of HV 20 at the centre. The surface
and bottom layers were removed by grinding to prepare
the tensile samples, thus removing the heterogeneities
caused by the strain gradient of the process. The drawing
test, shown in Fig. 3(e), yielded very similar rupture
depths for all samples, showing that there was no
significant change in this property due to the similarity of
grain sizes and hardness.

The plastic anisotropy measurements are
summarized in Table 2 and Fig. 5. A normal anisotropy
of 0.6 was obtained for both SR and ASR samples
confirming the Erichsen test and showing that there was
no effect of the ASR in this property. On the other hand,
there was a greater improvement of planar anisotropy for
the ASR and annealed samples with the exception of
sample 2010A, which presented high rotated cube fiber
after annealing.

Table 2 Measured values of planar |Ar] and normal ry
anisotropy after annealing

Sample |AF] Tm
1010A 0.313 0.668
1505A 0.054 0.615
1510A 0.023 0.626
2005A 0.071 0.558
2010A 0.371 0.558
1.2
o— 1010A

101

0.8

~

0.6 |
0.4 L \A'l
02}

0 45 90

Position relative to RD/(°)

Fig. 5 Measured plastic anisotropy (r) as function of axis
orientation of tensile test

4 Discussion

The high friction condition imposed in the
experimental conditions created two different zones
along the sheet thickness: a surface region affected by
the frictional forces at the roll/sheet interface, in which a
rotational field about ND was predominant; and a central
one, in which a rotational field around TD was

predominant.

In the centre the expected shear textures with the
transformation of Copper {112}(111) and Goss
{110}(001) into {111}//ND orientations were obtained.

In shear deformation, the simple shear condition is
achieved when the two shear planes are very close to
each other and a thin deformation zone is formed. This is
the case of equal channel angular pressing (ECAP) with
a die with sharp inner and outer corners, low friction and
the application of back pressure. However, when
analysing the velocity gradient tensors in the shear plane,
BEYERLEIN and TOME [28] found that when a fitting
angle is introduced and deformation is comprised in a
fan-like gap, the outer part of the channel is subjected to
rigid body rotation and the inner part to simple shear,
thus producing a mixed deformation mode. In the case of
ASR, the shear surfaces are several millimetres apart,
and under high friction, both shear and rigid body
rotation gradients develop across the sample thickness.
The FE simulation showed that a higher TRP transmits
shear to the sheet centre whereas a lower TRP increases
the rigid body rotation. Both components generate
crystallographic rotation about TD and in the centre of
the sample. This rotation is present in the centre of the
analyzed samples.

For a TD symmetry axis, JIN and LLOYD [29]
calculated by full constrained Taylor model that a y,/e,,
equal to 1.5 should promote the rotation of the Cu
{112}({111) to a (111)//ND orientation. LEE et al [5]
observed shear textures in both SR and ASR at y, /e,
greater than 0.8. WRONSKI et al [14] showed that a
more effective rotation would occur at a shear to
compression ratio of 1. The experimental results in this
work showed that under high friction and rigid body
gradients, this shift takes place at y,/e. of 0.5, which
theoretically should yield compression components.
Therefore, the rotation is not due to shear alone but is
also influenced by the rigid body rotation imposed in the
process.

Another feature, which cannot be explained only by
the assumption of the TD symmetry axis, is the texture
that is developed on the sheet surface. An extra set of
simulations were performed without the restriction of a
central RDXND symmetry plane and for these the
relative rotation close to the faster roll is represented in
Fig. 6. Without the symmetry restriction, rotations about
ND are present in the displacement field due to local
variations in the stress field. No rotation is predicted for
the SR, while for the ASR the rotation about ND
increases when TRP is decreased from 10% to 5% and,
the rotation about TD increases with the increase of the
velocity ratio. At the lower TRP the differences
between top and bottom roll are more accentuated. The
net result in the ¢, sections of the ODFs is a spread of the
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Fig. 6 Calculated rigid body rotation close to faster roll interface when no symmetry is imposed in process (a), measured intensities
of (001)//ND fibre at top (b) and bottom (c) surfaces, and (111)//ND fibre at top (d) and bottom (e) surfaces

orientations in the ¢, direction forming {100}//ND,
{112}//ND and {111}//ND, as shown in Fig. 2. Figure 6
shows the intensity on the {100}//ND and {111}//ND
fibres. The texture due to friction produces higher
intensities for the cube-fibre (Figs. 6(b) and (c)) than for
the y-fibre (Figs. 6(d) and (e)) and the cube-rotated cube
components increase at lower TRP.

The combination of rotated cube and y fibre
components at both upper and bottom surfaces is
commonly observed in high friction conditions
[10,21,30]. In a previous work on ECAP [31], when a
rotation about ND is applied to a plane compression

texture, the texture rotates towards the Goss and rotated
cube orientations. This was characterized by shifts in the
@ axis in the ODFs, whereas when the rotation axis is
parallel to TD the texture shift occurred in @, leading to
the formation of (111) orientations by the displacement
of Goss or Copper textures. This comparison reinforces
the assumption that a stronger rotational field around ND
exists due to the roll-sample interface under high friction;
this has also been previously reported by JIN and
LLOYD [10,29] in ASR experiments. The observed
texture on the surface is the result of this complex strain
generated by the high friction at the roll-sample
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interface.

SR has a very conservative strain path, which yields
a strong crystallographic orientation and a more uneven
strain distribution within the microstructure. The
presence of pre-nucleated fine grains of cube orientation
and their preferential growth over deformed S oriented
grains generates the typical annealing texture with strong
cube components [32]. On the other hand, ASR enforces
a less conservative deformation path due to the strong
rotation field caused by either shear or rigid body
rotation. As a consequence, the deformed sample exhibits
low texture intensities, as shown in Fig. 7.

12

mmm Deformed
10 C— Annealed {111}
== Annealed {100}

Intensity
N

1010 1505

1510 2050 2010
Sample

Fig. 7 Texture intensities in {111} and {100} pole figures of
as-deformed sheet center

This should lead to a less oriented nucleation and
growth process and, in fact, the randomization or the
decrease of texture components after annealing, as
shown in Fig. 7, has also been observed [29,33—36]. The
stability of the y fibre after heat treatment, as in the
annealed samples 1510 A and 2005 A, however, has not
been frequently observed, and in the context of plastic
behaviour this favours planar anisotropy since the
{I11}//ND orientations generate the more isotropic
behaviour observed in sample 1510A.

The plastic anisotropy of a random texture should
increase rp, and decrease Ar. CHEON et al [33] and KIM
et al [34] obtained this shift towards more favourable
anisotropy values in their experimental results, but this is
not consensual in other literature data. A compilation of
experimental , and Ar values from Refs. [13,30,33—39],
is shown in Fig. 8. The dispersion of data is wide
since there is a strong variation of the resultant textures.
Improvement of the normal anisotropy is less evident
than that on the planar anisotropy, but the mean values
indicate that the velocity ratio of 1.5 is the condition,
confirmed by this work, in which a tendency to reduce
the planar and increase the normal anisotropy is achieved
in most cases.

1.2

1.0}

=
)
.

.—rm

0 o—Ar

_02 L L 1 1 L
0.5 1.0 1.5 2.0 2.5 3.0 3.5

Asymmetry ratio

Fig. 8 Lankford parameters of planar (Ar) and normal (ry)
anisotropy

5 Conclusions

(1) This work analysed the influence of the
variation of velocity ratio and TRP in the ASR process
under high friction coefficient on the post-annealing
texture and its plastic anisotropy.

(2) The deformation presented a mixed mode with
shear, compression and rigid body rotation components.
In the sheet centre a crystallographic rotation of the
compression components about the TD was obtained,
that yielded the development of {111}//ND texture
components. On the other hand, on the surface the local
variation of the velocity gradients caused an extra
rotation component about ND. This yielded rotated cube
components.

(3) The increase of the velocity ratio accentuates the
rotation about TD and the decrease in TRP accentuates
the rotation about ND.

(4) Because the imposed deformation path in
non-conservative after annealing most of the ASR texture
components were maintained and the final texture had
lower intensity.

(5) All conditions obtained similar deep drawability
in the Erichsen test and plastic normal anisotropy, but at
a velocity ratio of 1.5 and TRP of 10% the planar
anisotropy was reduced.
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