

FORMATION LAW OF PHASES IN ULTRAFINE POWDERS OF Al-Cu ALLOY PREPARED BY GAS EVAPORATION PROCESS^①

Yan Hongge, Chen Zhenhua, Hu Xiang and Huang Peiyun
*Nonequilibrium Materials Science & Engineering Research Institute,
 Central South University of Technology, Changsha 410083, P. R. China*

ABSTRACT Ultrafine powders of Al-Cu alloy were prepared by gas evaporation process, formation law of the phases in the as-prepared powders were examined. The results showed that the phases formed in ultrafine powders are within the scope of the phases given in Al-Cu alloy phase diagram. There are only θ CuAl₂, γ_2 -Al₄Cu₉, β AlCu₃ alloy phases formed in the tested powders. The kinds of the phases formed in the powders and their fractions are controlled by the pressure fraction of the components in the mixed vapor and the cooling conditions of the experimental equipment. Changing pressure of Ar gas could only change the fractions of different phases in the powders. The solid solubility of Al and Cu atoms in the lattice of phase Cu and phase Al in the powders was within the scope of that in Al-Cu alloy diagram. The structure of the phases in the as-prepared powders were in equilibrium state.

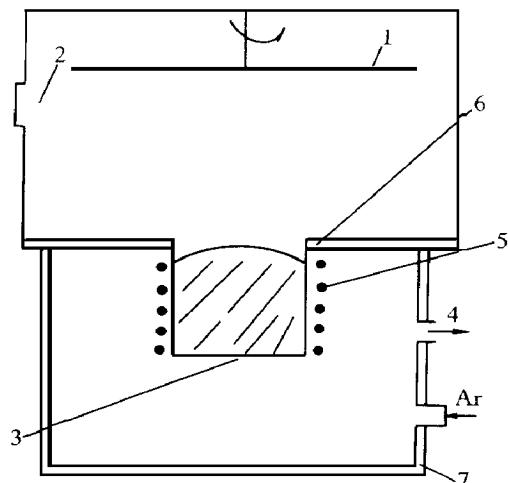
Key words gas evaporation vapor condensation ultrafine powders alloy powder

1 INTRODUCTION

Ultrafine powders with a particle size less than 100 nm have excellent properties in contrast to coarse grain materials^[1, 2] and have widespread application prospects in metallurgy, materials, chemistry etc industrial fields. Ultrafine powders of pure metals have been investigated intensively in the past^[3]. If a certain transition phase or alloy phases can form in ultrafine powders, the powders may show excellent structure and properties, such as unique magnetic properties, good catalytic characteristics in reactivity, selectivity and durability. It has been shown that ultrafine powders with alloy phases have special properties^[4, 5]. Some investigations have been done on some metal/ceramic composite ultrafine powders^[6, 7, 8] and alloy ultrafine powders^[4, 9, 10] in recent years, but a few are on the formation law and mechanisms of alloy phases in ultrafine powders. To clarify these problems is very important in preparation of ultrafine

powders with controlled alloy phases formation for special application.

Gas evaporation method is an effective mean for preparation of pure metal ultrafine powders, it can also be used to prepare alloy ultrafine powders by evaporating a master alloy from a single evaporation source or by evaporating the constituent metals from two sources to make confluence of two metal smokes. Induction current, electron beam, resistance (in spiral or boat shape), laser or plasma flame can be chosen as the heating source.


This paper intends to examine the formation law of phases in ultrafine powders of Al-Cu alloy prepared by evaporating master alloys with different compositions and in various argon gas pressure using induction current as the heating source.

2 EXPERIMENTAL

Fig. 1 gives the schematic illustration of the

① Received Aug. 30, 1998; accepted Jan. 4, 1999

experimental equipment with 800 mm in diameter and 350 mm in height. Al-Cu alloys were evaporated at 1400 °C in Ar gas atmosphere with a purity about 99.995 %, using an alumina crucible of 120 mm in diameter and 100 mm in height. The purity of aluminum and copper was about 99.95 %. Argon gas was supplied from the bottom of the chamber. Amount of the master alloy in the crucible was about 4 ~ 5 kg. Temperature of the alloy melt was examined by an optic pyrometer and controlled by adjusting the input power of the equipment with a fluctuation less than 30 K. A slow oxidation treatment was applied to the as-prepared powders before being exposed to air after the evaporation procedure. Samples were collected at the height of 300 mm above the evaporation source where the temperature are lower than 373 K and there is no change in phase and particle size in as-prepared powders.

Fig.1 Schematic diagram of evaporation equipment

1 — Powder collector ; 2 — Window ;
3 — Crucible ; 4 — Vacuum pump ;
5 — Coil ; 6 , 7 — Water cooled wall

Kinds of the phase and morphology of the particles were examined by X-ray diffraction and transmission electron microscopy. The relative amount of each phase is calculated by their relative area ratio of the diffraction peaks in the XRD patterns.

Evaporation time was kept at about 10 min

to get enough samples for XRD and TEM exam, there was no changing in Ar gas pressure during the experiments.

3 RESULTS

3.1 Effects of composition of master alloy on formation law of phases in as prepared ultrafine powders

A series of master alloy with the composition of $Al_{100-x}Cu_x$ ($x = 15.5, 30, 40, 46.3, 32.3, 63, 75.7$ % (mole fraction, %)) were evaporated at 1400 °C in 5.0×10^3 Pa Ar gas atmosphere. X-ray diffraction patterns of the as-prepared ultrafine powders are given in Fig.2.

As identified in Fig.2, the resulting ultrafine powders were composed of Al phase for the master alloy with Cu less than 30 %, $Al + \theta CuAl_2$ for the master alloy with Cu from 30 % to 46.3 %, $Al(Cu) + \theta CuAl_2 + \gamma_2 Al_4Cu_9$ for the master alloy with Cu from 46.3 % to 52.2 %, $\alpha Cu(Al) + \gamma_2 Al_4Cu_9 + \beta AlCu_3$ for the master alloy with Cu from 52.2 % to 63.0 %. There was no alloy phase in the powders when the amount of Cu in master alloy was above 75.5 %.

The dependence of fraction of the alloy phases upon the composition of the master alloy was given in Fig.3 and the changing tendency in lattice parameter a_0 of Al phase and Cu phase in the powders was given in Fig.4 which was obtained from the XRD results. Kinds of the alloy phases and their fraction in the powders were obviously affected according to Fig.3. Lattice parameters a_0 of Al phase in the powders decreased with increasing Cu in the master alloy, which showed a solution of Cu atoms in Al lattice. The maximum lattice distortion ($\Delta a/a_0$) for Al was 0.5 %, so the maximum solid solubility of Cu in Al was about 4.93 % according to the Vegard equation^[11]. When fraction of Cu in the master alloy was above 63.0 %, the maximum lattice distortion ($\Delta a/a_0$) for Cu was 1.2 %, so the maximum solid solubility of Al in Cu was 9.9 % according to the Vegard Equation. It is obvious that the solid solubility of Al and Cu atoms in the lattice of phase Cu and phase Al in the powders was within the scope of that in Al-Cu alloy diagram.

3.2 Effect of Ar gas pressure on phases in powders

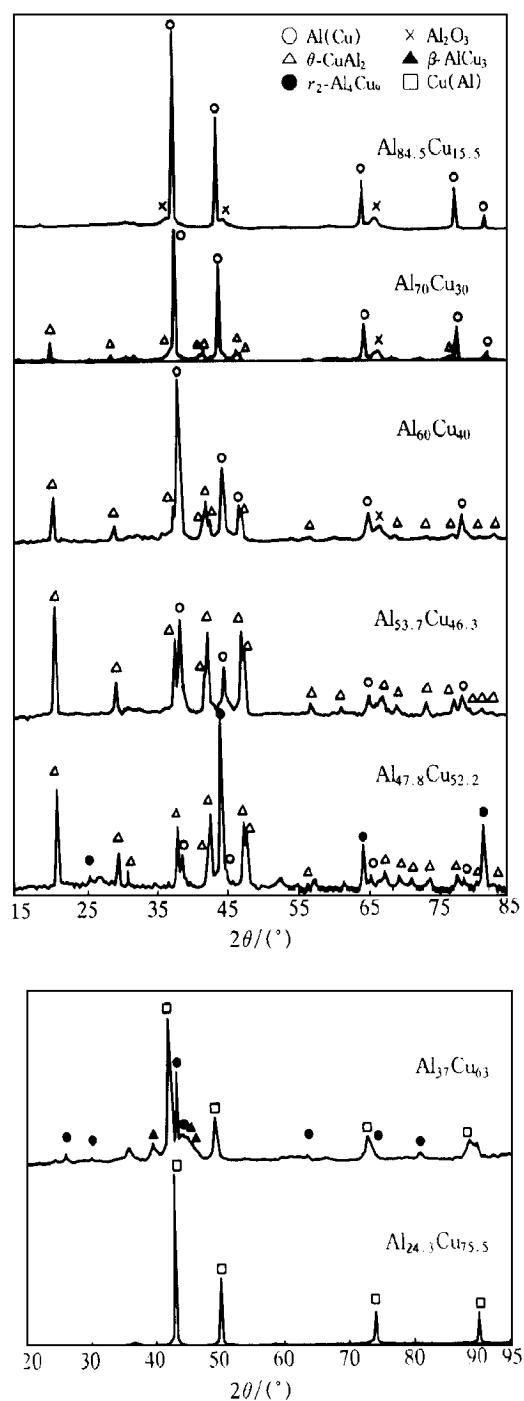


Fig.2 X-ray diffraction patterns of ultrafine powders

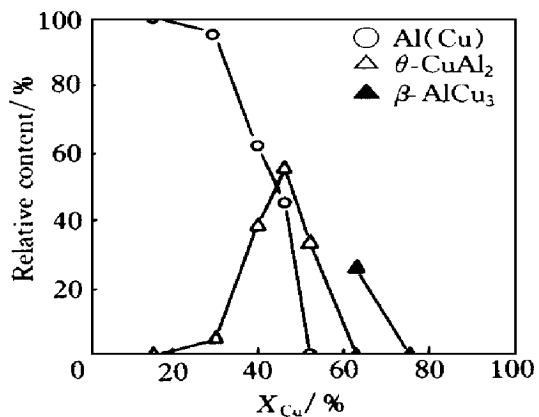


Fig.3 Correlation between composition of master alloy and relative amount of alloy phases in as-prepared powders

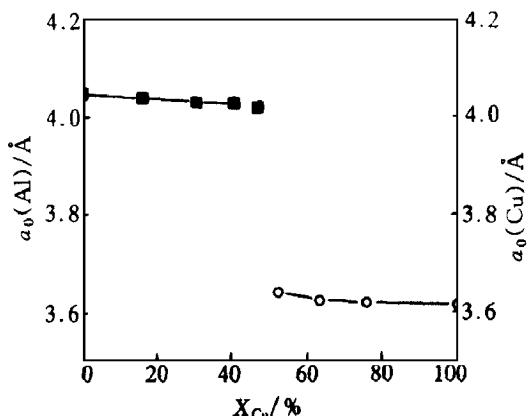


Fig.4 Effect of Cu content on lattice parameters of Al phase and Cu phase of as-prepared powders

The master alloy $\text{Al}_{37}\text{Cu}_{63}$ was chosen to investigate the formation law of phases in ultrafine powders when changing Ar gas pressure from 1.0×10^2 Pa to 1.0×10^4 Pa, the X-ray diffraction patterns of the powders were given in Fig. 5. It is obvious that the kinds of phases in the powders remain constant, but the fraction of each phase changed according to the characteristics of the diffraction peak patterns as shown in Fig. 6.

X-ray diffraction measurements showed that the structure of all the phases formed in the as-prepared powders were in equilibrium state and

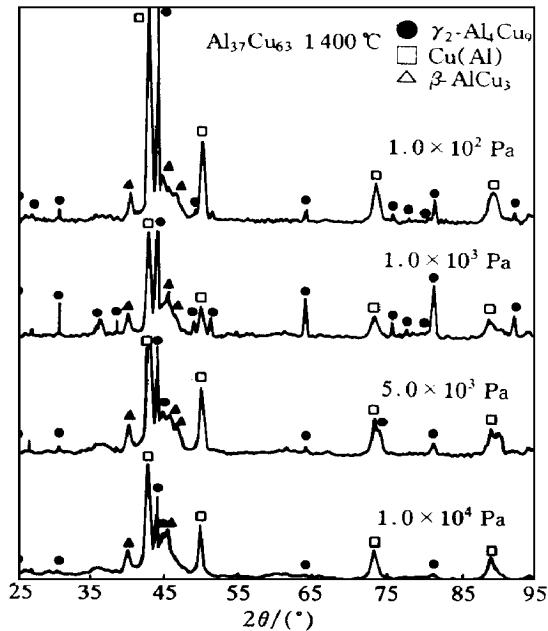


Fig. 5 X-ray diffraction patterns of powders obtained from master alloy of $\text{Al}_{37}\text{Cu}_{63}$

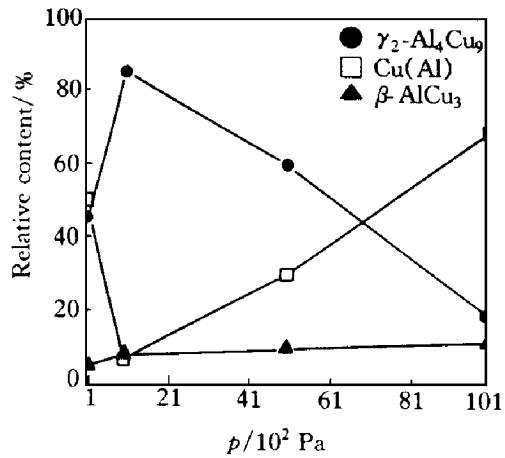


Fig. 6 Effects of Ar gas pressure on fractions of phases in as-prepared powders

within the phase scope given in Al-Cu alloy diagram.

3.3 Particle morphology

Fig. 7 shows morphology and structure of the particles under different experiment conditions.

The particle in Fig. 7(a) is tadpole-like in shape, particle size in Fig. 7(b) is between 20 ~ 50 nm in spherical shape, particle A shows different scattering contrast, particles B shows bilayer structure. These results are very different from that of pure Al particles and pure Cu particles^[3], which means these particles comprises different phases.

4 DISCUSSION

To provide insight into the mechanisms that controlling the formation law of alloy phases in the as-prepared powders, it is necessary to analysis the partial pressure of the component in vapor and nucleation, growth procedure of particles. The partial pressure can be calculated by equation:

$$P_{\text{Al}} = a_{\text{Al}} P_{\text{Al}}^0, P_{\text{Cu}} = a_{\text{Cu}} P_{\text{Cu}}^0 \quad (1)$$

where a_{Al} and a_{Cu} are the activity of Al and Cu in alloy melt, P_{Al}^0 and P_{Cu}^0 are the saturation vapor pressure of aluminum and copper at a given temperature. P_{Al}^0 and P_{Cu}^0 are 22.6 Pa and 7.3 Pa at 1400 °C calculated by equation^[12]:

$$\lg P_{\text{Al}} = -16450/T - 1.231\lg T + 12.36 \quad (2)$$

$$\lg P_{\text{Cu}} = -17650/T - 1.274\lg T + 13.39 \quad (3)$$

Table 1 gives the activity of Al and Cu in master alloy melt with different composition. Table 2 gives the partial pressure of Al and Cu in the mixed vapors calculated by Eq.(1).

Table 3 shows the correlation among the composition of the master alloys, the fraction of components in the mixed vapor calculated by Eq. (4) and the phases in ultrafine powders:

$$\left. \begin{aligned} X_{\text{Al}} &= \frac{P_{\text{Al}}}{P_{\text{Al}} + P_{\text{Cu}}} \times 100 \% \\ X_{\text{Cu}} &= \frac{P_{\text{Cu}}}{P_{\text{Al}} + P_{\text{Cu}}} \times 100 \% \end{aligned} \right\} \quad (4)$$

It was obvious that relation between the fraction of components in the vapor and the phases in the as-prepared powders was very different from that in the phase diagram given in Fig. 8. There only θCuAl_2 , $\gamma_2\text{-Al}_4\text{Cu}_9$ and $\beta\text{-AlCu}_3$ alloy phases formed in the as-prepared powders when composition of the master alloy

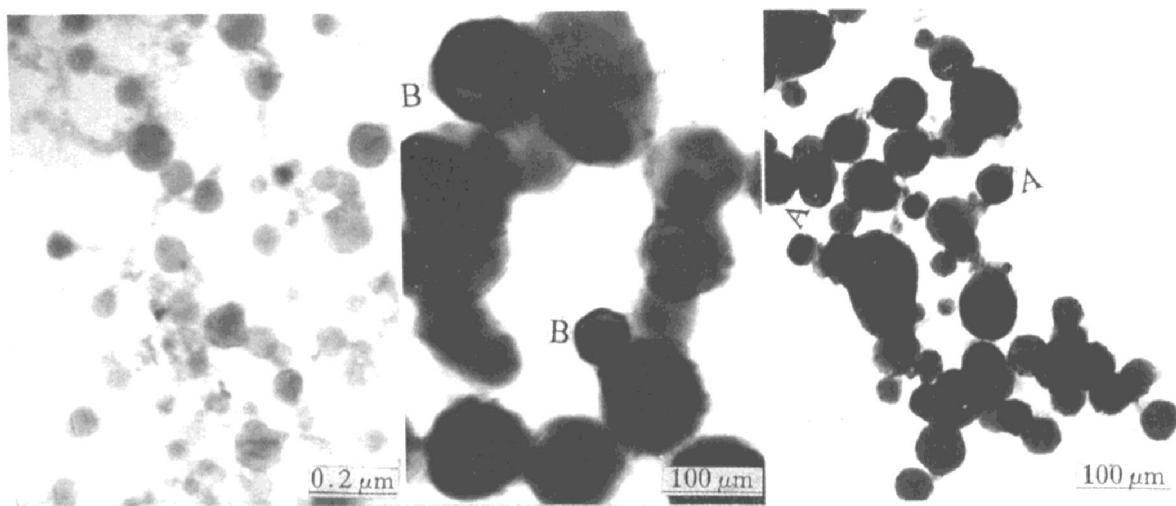


Fig.7 Micrographs of ultrafine particles
(a) $\text{Al}_{53.7}\text{Cu}_{46.3}$; (b) $\text{Al}_{37}\text{Cu}_{63}$

Table 1 Activities of Al and Cu in $\text{Al}_{100-x}\text{Cu}_x$ alloy melts at 1400 °C (mole fraction, %)^[13]

Composition of the master alloy	$x = 15.5$	$x = 30.0$	$x = 40.0$	$x = 46.3$	$x = 52.2$	$x = 63.0$	$x = 75.7$	
Activities	a_{Al}	0.8239	0.6090	0.4543	0.3321	0.2549	0.1183	0.0166
	a_{Cu}	0.0145	0.0721	0.0976	0.1134	0.1550	0.2925	0.5806

Table 2 Partial pressure (Pa) of Al and Cu in mixed vapor at 1400 °C (mole fraction, %)

Composition of master alloy	$x = 15.5$	$x = 30.0$	$x = 40.0$	$x = 46.3$	$x = 52.2$	$x = 63.0$	$x = 75.7$	
Partial Pressure	p_{Al}	18.62	13.76	10.27	7.51	5.76	2.67	0.38
	p_{Cu}	0.11	0.53	0.71	0.83	1.13	2.14	4.24

Table 3 Correlation between composition of master alloy, fractions of components in mixed vapor and phases in powders

Composition of master alloy/ %	Composition of alloy vapor/ %	Phases in as-prepared powders
$\text{Al}_{84.5}\text{Cu}_{15.5}$	$\text{Al}_{99.4}\text{Cu}_{0.6}$	Al
$\text{Al}_{70}\text{Cu}_{30}$	$\text{Al}_{96.3}\text{Cu}_{3.7}$	Al + θCuAl_2
$\text{Al}_{60}\text{Cu}_{40}$	$\text{Al}_{93.5}\text{Cu}_{6.5}$	Al + θCuAl_2
$\text{Al}_{53.7}\text{Cu}_{46.3}$	$\text{Al}_{90}\text{Cu}_{10}$	Al + θCuAl_2
$\text{Al}_{47.8}\text{Cu}_{32.2}$	$\text{Al}_{83.5}\text{Cu}_{16.5}$	Al + $\theta\text{CuAl}_2 + \gamma_2\text{-Al}_4\text{Cu}_9$
$\text{Al}_{37}\text{Cu}_{63}$	$\text{Al}_{55.7}\text{Cu}_{44.3}$	$\alpha\text{Cu} + \beta\text{AlCu}_3$
$\text{Al}_{24.3}\text{Cu}_{75.7}$	$\text{Al}_8\text{Cu}_{92}$	αCu

changing from $\text{Al}_{70}\text{Cu}_{30}$ to $\text{Al}_{37}\text{Cu}_{63}$.

The present results are some different from that of other studies. In Ume moto M's experiment^[14], there formed θCuAl_2 , βAlCu_3 , $\gamma_2\text{-Al}_4\text{Cu}_9$, $\eta_2\text{-AlCu}$ phases in ultrafine powders of Al-Cu alloy by plasma flame method, but Nosaki K only obtained θ , γ_2 phases by arc plasma method^[4]. When Ohno evaporated Al-Cu master alloy by resistance heating method, there formed γ_2 , δ phases^[15], but Kaito C obtained δ , γ_2 , η_2 phases by the same method^[16].

So we can determine that the phases in ultrafine powders of the same alloy changes with the preparation process and the cooling effect of the experimental equipment. In the present experiment, metal smoke is observed to form above the evaporating source just at the height of sev-

eral millimeters where the atmosphere temperature is still very high and near to the evaporating temperature, the primary particles in the smoke is generally only $1 \sim 3 \text{ nm}^{[17]}$, so it can be said that these particles may be in liquid state. Onho T^[9] had shown in his experiment of preparing ultrafine powders of Cu-Zn alloy that there firstly formed the alloy phase with the highest melting point in the primary particles, then the phase can change to several other phases during the following period of cooling. According to the above state, the reason why there no χ and ξ phases formed in the as-prepared powders can be explained as that even though there formed χ and ξ phases, they will change to β and γ_2 phases in the following period of cooling.

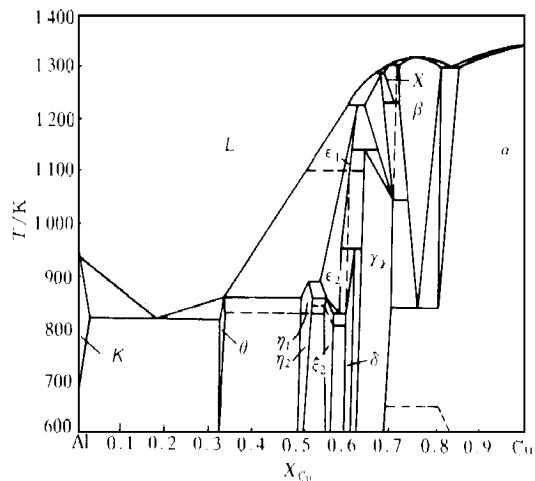


Fig.8 Phase diagram of Al-Cu system

5 CONCLUSIONS

The formation law of the phases in ultrafine powders of Al-Cu alloy system were investigated. The results are summarized as follows.

(1) The kinds of the phases formed in the as-prepared powders and their fractions are controlled by the pressure fraction of the components in the mixed vapor and the cooling conditions of the experimental equipment. Changing

in pressure of Ar gas can only change the fraction of different phase in the as-prepared powders in present experiment.

(2) There only θ CuAl₂, γ_2 -Al₄Cu₉, β Al-Cu₃ alloy phases can form in the ultrafine powders in present experiment, the phase structure of these phases are of equilibrium state structure.

(3) The solid solubility of Al and Cu atoms in the lattice of phase Cu and phase Al in the powders was within the scope of that in Al-Cu alloy diagram.

(4) The structure and morphology of the alloy particles are different from that of the pure Al and pure Cu particles.

REFERENCES

- 1 Kubo R. J Phys Soc Jap, 1962, 17: 975.
- 2 Hayashi C. Physics Today, 1987, (12): 44.
- 3 Uyeda R. Prog in Mater Sci, 1991, 35: 1.
- 4 Nosaki K, Inoue A, Yamaguchi T et al. Mater Trans JI M, 1994, 35(3): 149.
- 5 Itoh H and Kikuchi E. Appl Catal, 1990, 67: 1.
- 6 Yamaguchi T, Inoue A et al. Mater Trans JI M, 1994, 35(8): 538.
- 7 Inoue A, Yamaguchi T, Takeuchi A et al. Mater Trans JI M, 1994, 35(10): 663.
- 8 Onho T, Honma K et al. J Jap Inst Metals, 1989, 53(9): 936.
- 9 Ohno T. J Crystal Growth, 1984, 70: 541.
- 10 Saito Y, Yanagida A et al. J Crystal Growth, 1984, 70: 536.
- 11 Hume-Rothery W. The Structure of Metals and Alloys. 5th ed. 1969: 349.
- 12 Dai Yongnian, Zhao Zhong. Vacuum Metallurgy, (in Chinese). Beijing: Metallurgy Industry Press, 1998: 105 - 108.
- 13 Wu Kaisheng. SGET (Scientific Group Thermodata Europ) (Private Communication).
- 14 Umemoto M. Powder & Powder Metallurgy, (in Japanese), 1994, 4(15): 496.
- 15 Ohno T. J Crystal Growth, 1983, 64: 345.
- 16 Kaito C. Jap J Appl Phys, 1984, 23(3): 525.
- 17 Granqvist C G and Buhrman R A. Jap J Appl Phys, 1976, 13: 2287.

(Edited by Zhu Zhongguo)