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ABSTRACT  The process of anisotropic elastic dynamics was considered under the standard space , and the

corresponding eigen equations were obtained. They are independent of each other and represent various types

of waves respectively . The mixed wave of anisotropic elastic body consists of them . Following results were giv-

en: (1) the number of elastic waves of anisotropic body is equal to that of the subspaces of anisotropy ; (2) the

propagating speed of each elastic wave is only related to the eigen elasticity and the space module of the corre-

sponding subspace ; (3) the type of elastic waves depends on the mechanical meaning of modal strain under the

standard space . Finally, the properties of elastic waves of various crystals were discussed .
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1 INTRODUCTION

The concept of eigen elasticity originated

21 1t is in last decade

from Kelvin’ s work!!"
that eigen elasticity was studied again and devel-
oped, which brought about the concept of stan-
dard Space[3 -5

on constitution and evolution of anisotropic body

Based on these, a new theory

was presented[(" 81 , from which , people can eas-
ily study the complicated proble ms of anisotropic
body . In this paper, the author make a new ex-
ploration in the field of dynamics. It is well
known that there is a great difficulty in solving
the proble ms of anisotropic dynamics because of
a large amount of independent elastic coeffi-
cients . Only for a few crystals, such as cubical
crystal, can the solutions of plane wave on the
spcial plane be given in the form of the longitudi-
nal wave and transverse wave. For other more
complicated crystals, there are no solutions at
all. For example, up to now, we still don’ t
know the relationships between the number of
elastic waves and anisotropy , between the propa-
gating speed of elastic waves and elastic coeffi-
cients and between the mixed wave and decom-
posed waves, and so on. However, the theory
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given here investigates the elastic dynamics of
anisotropic body under the anisotropic subspace ,
so we can get the equations of the spectral form
of elastic dynamics, which are independent of
each other because of the orthogonality of the
subspaces . Thus, all of the informations on elas-
tic waves of anisotropic body can be obtained
completely. It is very important to engineer

ing[g’lo].

2 CONCEPT OF STANDARD SPACH?- 9

The eigenvalue proble m of elastic mechanics
can be written as follows :

Ce= 49
(i =1,2, ..., 6) (1)
Cle=ue
(i =1,2, ..., 6) (2)
where C is a matrix of the elastic coefficients ,

A;and p; are eigen elasticity and eigen flexibility
respectively,, and are invariables of coordinates .
¢ is the corresponding eigen vector, and meets
the condition of orthogonality .

The anisotropic subspace of elastic body
consists of the independent eigen vectors , that is
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the standard space .

W= W[qg 10 -0 Wi e 1 (3)
where the possible overlapping roots are consid-
ered, and using M( <6) represents the number
of anisotropic subspaces. Because the anisotropic
subspaces are split out of the elastic coefficients,
projecting the stress vector and strain vector on
the subspaces . We have :
ot Oy @y (4
ot ey Pu (5)

o= 0" g°
e=e’ @
where g" and e;" are stress and strain under
the standard space respectively, they are differ
ent from the previous ones in the mechanical
meaning , and are often called as the modal stress
and the modal strain. Eqns .(4) and (5) are also
regarded as a result of various modal sum. The

modal stress and strain hold Hook’ s law :

I
=~
&

(i=1,2, ., M (6)

3 EIGEN ELASTIC WAVE EQUATIONS OF
ANISOTROPIC BODY

When neglecting body force, the dynamic
equation and geometric equation of elastic body
are respectively :

Ok = Pl (7)
1
g = 5 (wj+ uy) (8)
From them, we can get the following equation

G + T = 2 06 %)

Because of the symmetry on (i,j) in Eqn.
(9) , we can re write it in the form of vector, and
substitute the engineering strain for the strain
tensor, we have :

A0 = phAye (10)
where

_ T
0=[9G,, 0p, %, O3, 93, 93] ,

2 0 0 0 3
Jyy 0 2% 0
A= 0 0 933 932 731
dys  dyy (It d33) Iy
d3 0 13 12 (dn + d33)
dy iy 0 93 93

e=[e;, exn, e, e, ¢35, €],
A is a symmetrical differential operator matrix,
and 9;;=9 ;=079 x;0x;, Ay =032/ tdt.
Appendix A proves that the elastic dynamic
Eqn. (10) under the geometric space is of fol-
lowing eigen form under the standard space .

nhe;” = PAe; ’

(i=1,2, ., M (12)
and
7= ¢ Tag
(i=1.2, -, M (13)
where 17 is an eigen differential operator, @

can be regarded as the restrictive vector of
anisotropic elasticity on dynamic equation. The
calculation shows that the eigen differential oper-
ator is the same as Laplace operator (either two
dimensions or three dimensions) for isotropic
body , and for most of anisotropic bodies . There
fore , the eigen elastic wave equations under the
standard space are of the following common
form :
A Vie(x ) = pi(x,t)

(i=1,2, ., M (14)
where v ;7 is Laplace operator of order i, 4 is
the modulo of standard space of order i. Eqn.
(14) shows that the number of elastic waves of
anisotropic body is equal to that of the subspaces
of anisotropy. Therefore the propagating speed
of elastic waves under its subspace can be calcu-
lated as the following equation :

v; = /ﬁﬁ
‘ P

(i=1,2, «., M (15)
4 ELASTIC WAVE IN ISOTROPIC BODY

There are two independent anisotropic sub-
spaces in an isotropic body:

ar)

93,
(dp+ d11)
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W= WY 491 0 W, &4, .., 4]

(16)
where
5 T
g = 3[1,1,1,0,0,0]
_ 2 :
@ = 2[0,1,-1,0,0,0] a7
6 T
@ = 6[2,-1,-1,0,0,0]
=& (i =4,5,6)

and & is a vector of order 6 in which ith ele ment
is 1 and others are 0 .

The corresponding eigen elasticity and eigen
differential operators are :

A=3(A+2.),4 =2
(18)

1
=3 v, = ;Vzlu

where VA is Laplace operator of tree dimen-
sion .

Thus, there exist two independent elastic
waves in isotropic body . They obey the follow-
ing equations :

(A+ 2 Vige, " (x, ) = @ (x,1t)

19)

uvine " (x,t) = @5 (x,t) (20)

It will be seen as follows that Eqns.(19)
and (20) represent the dilatant and shear wave
respectively .

From Eqn.(5) , the modal strain of order 1
is :

. . T

e = 4
Eqn.(21) represents the relative change of the

3
ce= ?(311 + ey + e33) (21)

volume of elastic body . So, Eqn.(19) shows the
motion of pure longitudinal wave .

Also from Eqn.(5) , the modal strain of or-
der 2 is:

e’ ¢ =e- e & (22)
Using the condition of orthogonality , than we
have :

*

l e | =[(e-¢e g )"
(e- e a1

=T - )P+ (- e)s

(e3- e’y (23)
Eqn.(23) represents the pure shear strain

on the eight-side body. So Eqn.(20) shows the
motion of pure transverse wave .

5 ELASTIC WAVE IN ANISOTROPIC
BODIES

5.1 Cubical crystal

w= w7 410 mPT e,4]10
Wil e, 6, 6] (24)
where @4, @, ..., % are the same as in Eqn.
(17) .
A = ¢+ 2c,
A=y -
A = cy
1
= — 25
A= (25)
_ 1
&=
B =1
AR Ve (x,t) = @] (x,1)
(i =1,2,3) (26)
. B
e = ?(311 + ey + e33) (27)
. 1
€, = [;(322 - 333)2 +
1
o Qen - e - eV (28)
. 1
ey = J?(enz - e%l - e%z) (29)

There exist three elastic waves in cubical
crystal, one is the dilatant wave and two others
are shear waves .

5.2 Sixangle crystal
w= w7 q10 W, a] ®
W, ¢, 410 W[ ¢, a]

(30)
where
G, = €13 »
2 =
J(/l1,2 - O - 612)2 +2Cl32
- ¢y - ¢
(1,1 ez fn- b; 2 0,0,01"
€13
J2 T
(29 2[l,- 1,0,0,0,0]
g =&,1=4,5,6

(31)
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Ci1 + Cip + C33
/11,2 = 2
cip + ¢p- ¢
J( 11 212 33)2 . 26132
A= - i, A= oo (32)
4, = o1y’
2 =
(A o- ¢ - 612)2 + 26%3
2 1
B= 3 A=

Ag Ve  (x,t) = @i (x,t)

(i =1,2) (33)
ApVies (x,t) = @ (x,1) (34)
Aa(Vin+2d,) e (x,t) = @4 (x,1)

(35)

where Vv is Laplace operator of two dimen-
sion .
et = €13 y
12 =
/ 2 2
J(/l1,2 -0 - Cp)T * 2cy;
Ap- -
[en + exn+ ( ) €33]
€13
(36)
* l 2 2
ey = [\/;(ell + exn)" + e 37)
1

e4* = /2{ 3322 + 3312} (33)

There exist four elastic waves in six-angle
crystal. Two are dilatant waves and two others
are shear waves , in which third wave is a plane
wave .

6 CONCLUSIONS

Using the way of projecting the mechanical
qualities on the standard space rather than the
geometrical space, the elastic dynamic equation
is divided into several eigen dynamic equations,
from which we obtain a general formula of
anisotropic elastic waves and prove the following
results :

(1) The number of elastic waves of
anisotropic body is equal to that of anisotropic
subspaces ;

(2) The propagating speed of elastic waves
of anisotropic body is directly proportional to the
eigen elasticity and module of the corresponding
anisotropic subspace ;

(3) The propagating form of elastic waves
of anisotropic body is dependent on the mechani-
cal meaning of the modal strain. For example , if
the modal strain represents the change of vol-
ume , the elastic wave is dilatant type , and if the
modal strain represents the change of shape, the
elastic wave is shear type ;

(4) The mixed wave of anisotropic body is
the modal sum of different elastic waves .

The calculation shows that the propagating
forms of elastic waves in crystals are all incom-
plete dilatant type or incomplete shear type ex-
cept the pure longitudinal or pure transverse
waves in an isotropic body .
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Appendix A
Proof of Eigen Elastic Dynamics

The generalized Hooke’ s law and dynamical
equation are respectively

0= Ce (Al)

A0 = pAye (A2)
Let 0= A¢, in which ais a time-space vari-
able, ¢is an unknown vector, and Ais an un-
known constant. According to the generalized
Hooke’ s law, if e = a¢, A and ¢ must be
nonzero solutions of following equation :
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(C- )y ¢=0 ( A3)
It is seen that dand ¢are eigenvalue and eigen-
vector of the elastic coefficient matrix C. So we

get the following equations :
Ce=4de  (i=12,.,6 (A

Co= o/ (A5)
C= o4A0'!' = oA10" (A6)
where 4 is eigen elastic moduli matrix, which

is the ciagonal matrix, @ is the modal matrix,
which is the orthogonal one .

Substituting the stress vector ¢ = A1 ¢ and
strain vector e = a ¢ into the dynamical Eqn.

( A2) , we have

rag = P (ag ( A7)

It is seen from Eqn.( A7) that under the condi-
tion of elasticity , the geometric differential oper-
ator matrix A in the dynamical equation also has
the eigen properties , and the following equation-
is held.

(A- pgh(a®y =0 (A8)
Transposing Eqn.( A8) , We have:
ad'(a- gy =0 ( A9)

where a can not be zero, otherwise , there will

be zero response . so, we have
S(a- ) =0 (A10)
It is seen from Eqn.( Al0) that 7= pAyu/ Aand
¢ are the eigen value and eigenvector of the
matix A respectively . Because ¢is the basic vec
tor of the anisotropic subspace of elastic body , if
we project the geometric differential operator of
dynamical equation on the standard space, its
eigenvalue will be proportional to the time differ
ential operator.

From Eqn.( Al0) , we obtain the following

equations :
A¢ = n4 (i =1,2, «,6) (All)
AND = @I (A12)
A= oro' - ord (AL3)
where  /7is the matrix of eigen geometric dif-

ferential operator, which is diagonal .
Substituting Eqn.( Al3) into Eqn.( A2) ,
we have
@" o= png I De ( Al4)
According to the concept of the elastic stan-

dard space :
o = @'o ( AL5)
e’ = e (Al6)

where 0" and e’ are the modal stress vector
and modal strain vector respectively .

Eqn.( Al4) becomes :

0" = prglle” (A17)
or

ro’ = phrye’ (Al8)
Rewriting Eqn.( Al8) in the form of compo-
nent .

IZO; = ,OAttE;
(i=1,2, ..., M (A19)
where M is the number of independent

anisotropic subspaces .
Using the modal Hooke’ s Law, Eqn.
(Al9) become:
nhe; = pAtte;
(i=1,2, -, M (A20)
This is the eigen form of elastic dynamical
equation .

(Edited by He Xuefeng)



