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Abstract: The comprehensive nonlinear flow behaviors of a ductile alloy play a significant role in the numerical analysis of its 
forming process. The accurate characterization of as-forged Ti−13Nb−13Zr alloy was conducted by an improved intelligent 
algorithm, GA−SVR, the combination of genetic algorithm (GA) and support vector regression (SVR). The GA−SVR model learns 
from a training dataset and then is verified by a test dataset. As for the generalization ability of the solved GA−SVR model, no matter 
in β phase temperature range or (α+β) phase temperature range, the correlation coefficient R-values are always larger than 0.9999, 
and the AARE-values are always lower than 0.18%. The solved GA−SVR model accurately tracks the highly-nonlinear flow 
behaviors of Ti−13Nb−13Zr alloy. The stress−strain data expanded by this model are input into finite element solver, and the 
computation accuracy is improved. 
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1 Introduction 
 

Ti−13Nb−13Zr titanium alloy is a widely applied 
biomedical alloy due to the advantages of low elastic 
modulus, high strength, excellent corrosion resistance, 
nontoxicity, etc [1]. In the manufacturing process of the 
components with this alloy, the isothermal constitutive 
flow behaviors at different strain rates, strains and 
temperatures provide the basic stress−strain data for the 
numerical computation of forming process. Consequently, 
it is a significant issue to track the experimental flow 
behaviors, and further expand the stress−strain data in a 
wider range of deformation conditions. In recent years, 
along with the great development of intelligent machine 
learning, the methods of artificial neural network (ANN), 
genetic algorithm (GA), support vector regression (SVR), 
etc. have been introduced into modeling the complex 
flow behaviors of alloys [1−3]. 

ANN method by simulating biological neural 

systems has been successfully applied to characterizing 
the flow behaviors of many alloys, such as nickel base 
alloy [2], austenitic stainless steel [4], and Al−Mg   
alloy [5]. As for the process of determining proper 
network topologies and training parameters of an ANN 
model, it is a manual trial-and-error and time-consuming 
process, and the optimal scheme cannot be found at all. 
In addition, it should be noted that ANN model cannot 
avoid falling into local extremum, which results in the 
inability to obtain a global optimal solution. 

Support vector regression (SVR), as an intelligent 
machine learning method, is widely adopted to 
characterize the nonlinear flow behaviors of alloys   
due to its excellent regression analysis ability and 
robustness [6−8]. Compared with ANN, SVR is more 
robust, as it avoids falling into local extremum, and then 
gets a global optimal solution. In SVR method, the 
learning ability and generalization ability can be 
dramatically enhanced by adjusting parameters including 
penalty factor C, kernel parameter γ and insensitive loss  
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function ζ appropriately. The SVR model with suitable C, 
γ and ζ will precisely learn the highly-nonlinear flow 
behaviors of Ti−13Nb−13Zr alloy, and properly ignore 
some singular points on stress−strain curves. It is 
time-consuming to establish an accurate SVR model by 
optimizing each parameter individually. Consequently, it 
is significant to efficiently determine the optimal 
parameter combination of the three parameters (C, γ and 
ζ) in SVR to build an accurate model. LOU et al [7] 
accurately predicted the hot flow behaviors of AZ80 
magnesium alloy based on particle swarm optimization 
combined with SVR. In their work, particle swarm 
optimization was applied to determining the optimal 
solution of parameter C, γ and ζ, and the higher 
prediction precision than ANN was achieved. DESU   
et al [8] solved a SVR model to characterize the flow 
behaviors of austenitic stainless steel 304. In their work, 
the best correlation coefficient (R) was 0.9989. Moreover, 
the accuracy still could be improved since only few 
combinations of the three parameters (C, γ and ζ) were 
tried. 

In order to achieve a higher accuracy, genetic 
algorithm (GA), known as a bionic algorithm with a lot 
of merits, such as strong robustness, high efficiency and 
excellent parallel process, was introduced to efficiently 
solve the optimal combination of parameters (C, γ and ζ) 
in a SVR model by simulating the natural genetic 
mechanism [3,9]. The combined GA−SVR method only 
requires representative training samples from a work, 
and then it can self-adaptively seek the optimal 
combination of these three parameters to obtain the most 
accurate model. Compared with the work of DESU    
et al [8], the combined GA−SVR method achieved 
higher accuracy. The significant merit of GA−SVR is 
that when training parameters keep constant, training 
precision and prediction precision in different attempts 
for a determinate dataset keep stable. In this opinion, the 
robustness and generalization ability of GA−SVR are 
stronger than those of ANN. This work focuses on the 
application of GA−SVR method in the flow behavior 
characterization of Ti−13Nb−13Zr alloy. 
 
2 Experimental 
 
2.1 Materials 

The chemical compositions (wt.%) of the adopted 
Ti−13Nb−13Zr alloy are as follows: Nb 14.6, Zr 13.3, C 
0.03, Fe 0.02, N 0.015 and Ti balanced [1]. Figure 1 
shows the optical metallograph of the as-received 
Ti−13Nb−13Zr alloy. From a forged Ti−13Nb−13Zr 
alloy billet with 20 mm in height and 70 mm in diameter, 
24 cylindrical specimens with 12 mm in height and    
10 mm in diameter were machined by wire-electrode 
cutting. 

 

 
Fig. 1 Optical metallograph of as-received Ti−13Nb−13Zr 

alloy 

 

2.2 Experimental procedures 
In order to measure the true stress−strain data of 

as-forged Ti−13Nb−13Zr alloy, a series of isothermal 
compression tests were conducted. A Gleeble 3500 
thermo-mechanical simulator, with a high-speed heating 
system, a servo hydraulic system, a digital control 
system and a data acquisition system, was used. In order 
to reduce friction and prevent adhesion between the 
specimen ends and anvils, two graphite lubricants were 
used on their contact surfaces. Twenty-four test samples 
were heated to the specified deformation temperature 
with a constant heating rate of 30 K/s and held at that 
temperature for 3 min by thermo-coupled-feedback- 
controlled AC current. The heated cylindrical specimens 
were compressed to a true strain of 0.916 (a fixed height 
reduction of 60%) at the strain rates of 0.01, 0.1, 1 and 
10 s−1, and the temperatures of 923, 973, 1023, 1073, 
1123 and 1173 K. Subsequently, these compressed 
samples were immediately quenched into water to 
reserve the high-temperature microstructures. In the 
testing processes, the true stress−strain data of 
Ti−13Nb−13Zr alloy were monitored in Fig. 2. It is 
summarized that flow stress gradually decreases with 
strain rate decreasing at a certain temperature and a 
certain strain, while it increases with temperature 
decreasing at a certain strain rate and a certain strain. 
 
3 Construction of SVR for flow behaviors of 

Ti−13Nb−13Zr alloy 
 
3.1 Basic principles of SVR 

In SVR solving process, highly nonlinear 
low-dimensional data are mapped to linearly separable 
multidimensional data by kernel function           
k(xi, xj)=Φ(xi)ꞏΦ(xj), where k(xi, xj) is input variable, and 
Φ(x) is mapping function. Meanwhile, the radial basis  
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Fig. 2 True stress−strain curves of as-forged Ti−13Nb−13Zr alloy at different strain rates and temperatures: (a)  =0.01 s−1;      

(b)  =0.1 s−1; (c)  =1 s−1; (d)  =10 s−1 

 

function (RBF) of kernel function expressed as Eq. (1) 
can effectively improve the regression precision of  
SVR [1,8]: 
 
k(xi,x)=exp(−γ||xi−x||2)                        (1) 
 
wher γ is variable parameter of the RBF. 

y=f(x) can be expressed by Eq. (2) in SVR: 
 
f(x)=ωꞏx+e                                  (2) 
 
where ω is the multidimensional column vector; e is the 
bias term. 

Assuming that original data are (x1,y1), (x2,y2), 
(x3,y3), …, (xi,yi), …, (xk,yk), xi, yi∈R, and the function 
f(x) is able to estimate all data, the optimal function is 
proposed and expressed as  
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where ξi and *
i are slack variables which influence 

regression precision; C is the penalty factor; ζ is the 
insensitive loss parameter with a large impact on 
regression precision; l is the number of samples. In this 
work, temperature (T), strain () and strain rate ( ) are 
considered as the input variables x of SVR, and flow 
stress (σ) is used as the output variable f(x). 

The regression function of optimal separating 
hyperplane in SVR is expressed as 
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where αi is the Lagrange multiplier. 

As for SVR method, appropriate parameter settings 
are helpful to enhance the learning ability and 
generalization ability, and these parameters include 
penalty factor C in Eq. (3), kernel parameter γ in Eq. (1) 
and insensitive loss function ζ in Eq. (4). Here, the 
C-value and γ-value influence the robustness and 
generalization ability of SVR, respectively. The ζ-value 
influences the number of support vector and further 
impacts the regression precision of SVR. 
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3.2 Stress prediction model based on GA and SVR 
3.2.1 Basic principles of GA 

In GA solving process, a population is composed of 
several individuals encoded by genes. Here, the 
individual with a larger fitness value is selected and 
inherited to next generation by a fitness function. 
Subsequently, new individuals will be generated through 
the crossover and mutation of excellent individuals. The 
newly-generated populations are more adaptable to the 
environment than the antecedent populations. In the last 
generation, the individual with the best fitness value is 
output as an optimal solution [3,9]. 
3.2.2 Establishment of stress prediction model on 

GA−SVR 
In the solving process for the optimal combination 

of the three parameters (C, γ and ζ) in a SVR model by 
GA method, a total of 1224 input-output pairs were 
selected from the measured stress−strain data of 
Ti−13Nb−13Zr alloy. Among the total pairs, 408 
input−output pairs in the true strain range of 0.1−0.9 
with a gradient of 0.05 were used for testing the 
generalization ability of GA−SVR, and the remained 816 
input−output pairs were used to train GA−SVR. 

Here, the cross validation method, as an effective 
method for assessing the precision of data mining and 
machine learning, was adopted to evaluate the 
performance of the solved GA−SVR model. In the cross 
validation method, N groups are divided from the raw 
data, and one separate group is used as a validation 
dataset. The remaining (N−1) groups are utilized for 
training GA−SVR model. Each group of N groups is 
alternately set as validation dataset until the end of a 
round. The performance of GA−SVR model is related to 
the average number of evaluation index in N validation 

process. 
Here, two classical evaluation methods including 

mean square error (MSE, M) expressed as Eq. (6) and 
correlation coefficient (R) expressed as Eq. (7), were 
applied to measuring the fitness value and assess the 
degree of correlation between the experimental values 
and predicted values [10,11], respectively. In common, a 
larger R-value indicates that the solved GA−SVR model 
has a higher accuracy level. 
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where f(xi) are the predicted stresses; yi are the 
experimental stresses; N is the number of stress−strain 
samples. 
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where E is the sample of experimental stress−strain data; 
P is the sample of predicted stress−strain data; E  and 
P are the average values of experimental data and 
predicted data, respectively. 

Figure 3 shows the detailed flowchart to solve a 
GA−SVR model. Firstly, the population of GA−SVR 
model is initialized, and the three parameters (C, γ and ζ) 
are coded to the chromosomes of individuals. Here, the 
population number was set as 25, and was updated by the 
selection, crossover and mutation operators in solving 
process. Secondly, the indicator of MSE as Eq. (6)     
is used to calculate the fitness values of the individuals.  

 

 

Fig. 3 Flowchart to solve GA−SVR model 
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The individual with a larger fitness value is selected and 
inherited to the next generation with a larger probability. 
This repeated assessing process is called cross validation 
method. Finally, if the iteration number attains the 
predetermined value, the solving process ceases, and 
meanwhile the optimal parameter combination of the 
three parameters is obtained. Here, the predetermined 
iteration number was 50. 

The average fitness value and the best fitness value 
corresponding to the iteration number of the well-trained 
GA−SVR model for Ti−13Nb−13Zr alloy are shown in 
Fig. 4. It can be seen that the average fitness values are 
extremely close to the best fitness values. The three 
parameters (C, γ and ζ) with the best combination 
(R=0.999992) are 99.8697, 24.2188 and 0.0044, 
respectively. 

 

 
Fig. 4 Relationships between fitness values and iteration 

number of GA−SVR model for Ti−13Nb−13Zr alloy 

 
4 Evaluation of performance of solved GA− 

SVR model 
 

The evaluation of the learning ability and 
generalization ability of the solved model was performed 
by three indicators including correlation coefficient (R) 
as Eq. (7), relative error () as Eq. (8), average absolute 
relative error (AARE, A) expressed by Eq. (9) [1−3]: 
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In Ref. [1], QUAN et al solved the ANN model for 

Ti−13Nb−13Zr alloy. Here, the GA−SVR model for this 
ally was solved, and the performances of this model were 
compared with the previous ANN model in details by 
three indicators including R,  and AARE. 

Here, the stress−strain data of Ti−13Nb−13Zr alloy 

were clarified into (α+β) phase data and β phase data 
according to the phase transus temperature (1073 K), and 
the relative evaluation was conducted. As for the learning 
ability evaluation of the trained GA−SVR model of 
Ti−13Nb−13Zr alloy, the correlations between the 
trained stresses and the training predictions were fitted as 
Fig. 5(a) in (α+β) phase and Fig. 5(b) in β phase. Figure 
5 shows that no matter the microstructures of β phase or 
(α+β) phase, the R-values are always larger than  
0.99998, and the AARE-values are in the range of 
0−0.16%. As for the learning ability evaluation of the 
trained ANN model of Ti−13Nb−13Zr alloy in Ref. [1], 
the correlations between the trained stresses and training 
predictions is 0.99991, and the AARE-values are in the 
range of 0−3.2%. Consequently, it can be concluded that 
the trained GA−SVR model sufficiently learns the 
training samples, and the learning ability of GA−SVR 
model is stronger than that of ANN model. 
 

 
Fig. 5 Correlations between trained stresses and training 

predictions of GA−SVR model in (α+β) (a) and β (b) phase of 

Ti−13Nb−13Zr alloy 

 
As for the generalization ability evaluation of the 

solved GA−SVR model of Ti−13Nb−13Zr alloy, the 
scattered stress−strain data were predicted on the 
experimental stress−strain curves. Figure 6 shows that 
the predicted stresses are extremely close to the 
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experimental stress−strain curves. Furthermore, the 
correlations between the experimental stresses and the 
testing data of predictions by GA−SVR model were 
fitted as Fig. 7(a) in (α+β) phase and Fig. 7(b) in β phase. 
Figure 7 shows that no matter the microstructures of β 
phase or (α+β) phase, the R-values are always larger than 
0.9999, and the AARE-values are in the range of 

0−0.18%. 
In order to deeply understand the generalization 

ability of the solved GA−SVR model, the analysis of 
frequency distribution of sample relative errors () by 
Gaussian distribution method was carried out. By the 
analysis, the average value (μ) of all the -values 
expressed by Eq. (10) and the standard deviation (w)  

 

 

Fig. 6 Comparisons between experimental flow stresses and testing data predicted by GA−SVR model of Ti−13Nb−13Zr alloy:    

(a)  =0.01 s−1; (b)  =0.1 s−1; (c)  =1 s−1; (d)  =10 s−1 

 

 
Fig. 7 Correlations between experimental stresses and testing data predicted by GA−SVR model in (α+β) (a) and β (b) phase of 

Ti−13Nb−13Zr alloy 



Ze-yan SHI, et al/Trans. Nonferrous Met. Soc. China 29(2019) 2090−2098 

 

2096
 
expressed by Eq. (11) [3] were achieved:  
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Figure 8 shows the histogram distribution of sample 

relative errors between experimental stresses and 
predicted stresses of the solved GA−SVR model of 
Ti−13Nb−13Zr alloy. From Fig. 8, it can be seen that 
most of -values (95.588%) are distributed in the range 
from −0.5% to 0.5%, and the -value and w-value are 
−0.00162 and 0.26511, respectively. It can be deduced 
that the predicted stresses are close to the experimental 
stresses, and the distribution of sample relative errors has 
no jumping. It can be summarized that the solved 
GA−SVR model accurately tracks the highly nonlinear 
flow behaviors of Ti−13Nb−13Zr alloy. 
 

 
Fig. 8 Distribution of sample relative errors between 

experimental stresses and predicted stresses 

 

5 Applications of GA−SVR model in forming 
simulation 

 
In this section, the influence of input stress−strain 

data on simulated results of an isothermal compression 
process was studied by finite element (FE) software 
DEFORM. The parameters corresponding to the physical 
compression experiments were set in the finite element 
model. To improve the computational efficiency, one half 
of the test sample was adopted on account of its 
geometrical symmetry. In the computation process of 
material flow behaviors by finite element (FE) software, 
the limited input stress−strain data were derived by 
mathematical interpolation method. This means that the 
amount of input stress−strain data determines the 
computation accuracy. Therefore, the input stress−strain 
data need expanding. Here, the solved GA−SVR model 

was applied to enriching the stress−strain data of 
Ti−13Nb−13Zr alloy. 

A compression experiment at the temperature of 
1123 K, compressive strain of 0.9 and strain rate of 1 s−1 
was simulated with different input stress−strain data as 
Scheme-A and Scheme-B. The Scheme-A has the input 
stress−strain data expanded by the solved GA−SVR 
model. As shown in Fig. 9, the flow stress data at the 
strain rate of 1 s−1 and the temperatures of 948, 998, 
1048, 1098 and 1148 K were predicted. These data 
together with the experimental data as Scheme-A were 
input into finite element solver. The Scheme-B has the 
input stress−strain data acquired from the compression 
experiments at the strain rate of 1 s−1 and the 
temperatures of 923, 973, 1023, 1073, 1123 and 1173 K. 
 

 

Fig. 9 True stress−strain data of Ti−13Nb−13Zr alloy at strain 

rate of 1 s−1 

 
From the simulations of the compression 

experiments with input stress−strain data, the 
distributions of effective stress for Scheme-A and 
Scheme-B are achieved and shown in Fig. 10(a) and (b), 
respectively. It can be seen that the distributions of 
effective stress in Scheme-A and Scheme-B are similar, 
but the effective stress and the average effective stress 
are largely different. 

From the simulations, the relationships between 
stroke and load corresponding with Scheme-A and 
Scheme-B are achieved in Fig. 11. The load curve of 
Scheme-A is closer to the experimental curve than 
Scheme-B. The relative errors of the former are in the 
range from −6.683196% to 0.377291%, whereas those of 
the later are in the range from 8.561982% to 
27.35808616%. It can be summarized that insufficient 
input stress−strain data result in large simulation 
tolerance, while the expanded input stress−strain data 
from the well-trained GA−SVR model enhance the 
simulation accuracy. 
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Fig. 10 Distributions of effective stress for Scheme-A (a) and Scheme-B (b) at strain rate of 1 s−1, temperature of 1123 K, and 

compressive strain of 0.9 

 

 

Fig. 11 Relationships between stroke and load of top die of 

experimental data 

 

6 Conclusions 
 

(1) As for the learning ability evaluation of the 
trained GA−SVR model of Ti−13Nb−13Zr alloy, no 
matter β phase or (α+β) phase, the R-values are always 
larger than 0.99998, and the AARE-values are always 
lower than 0.16%. Its learning ability is stronger than the 
trained ANN model. 

(2) As for the generalization ability evaluation of 

the solved GA−SVR model of Ti−13Nb−13Zr alloy, no 
matter β phase or (α+β) phase, the R-values are always 
larger than 0.9999, and the AARE-values are in the range 
of 0−0.18%. The distribution of relative errors has no 
jumping. The solved GA−SVR model accurately tracks 
the highly-nonlinear flow behaviors. 

(3) The solved GA−SVR model is applied to 
enriching the stress−strain data of Ti−13Nb−13Zr alloy, 
and the expanded stress−strain data are input into finite 
element solver to enhance the simulation accuracy. 
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摘  要：韧塑性合金的复杂非线性流变行为是成形数值模拟的关键因素。结合遗传算法(GA)和支持向量回归

(SVR)，即 GA−SVR，准确表征 Ti−13Nb−13Zr 锻态合金的高度非线性流变行为。GA−SVR 模型对训练数据组进

行学习，并由检验数据组进行验证。对 GA−SVR 模型的泛化能力进行评价，无论合金处于 β相还是(α+β) 相，相

关系数 R 值均>0.9999，平均绝对相对误差(AARE)则始终<0.18%。求解的 GA−SVR 模型可以精确描述该合金的

高度非线性行为。该模型进而用来扩展合金的应力−应变数据，这些扩展后的数据被输入到有限元模型中以提升

数值模拟的精度。 

关键词：Ti−13Nb−13Zr 合金；流变应力；本构模型；支持向量回归；遗传算法 
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