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ABSTRACT Classical least squares estimation consists of minimizing the sum of the squared residuals of

observation. Many authors have produced more robust versions of this estimation by replacing the square by

something else , such as the absolute value . These approaches have been generalized, and their robust estima-

tions and influence functions of variance components have been presented. The results may have wide practical

and theoretical value .
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1 INTRODUCTION

The least squares method is a very popular
estimation technique in the linear regression (ad-
justment) model. But in spite of its mathe mati-
cal beauty and computational simplicity, this es-
timation suffers a dramatic lack of robustness.
Indeed, one single outlier can have an arbitrarily
large effect on the estimation. Therefore, many
scholars have studied this proble m and presented
many approaches of the robust estimations . “ Ro-
bust estimation” was presented by Box in 1953
and was developed by Huber in 1964, 1965 and
Hample in 1968['7. The robust estimate was in-
troduced into surveying data processing by
Krarup and Kubik in 1967 . Zhou IJianwen
(1989) and Yan Yuanxi (1991) also had con-
ducted much work in this field.

There is an extensive literature on robust
estimation in the case of the single error compo-
nent. There is, however, only a small body of
literature on robust estimation in the variance
components model . Arvesen and Layard (1975)
used the jackknife to estimate the variance ratio
in the twocomponent ( one way) unbalanced
model . Shoe maker (1980) and Rock (1983) ob-
tained estimations and tests by robust modifica-

tions of the mean squares of the classical analysis
of balanced designs . Fellner (1986) obtained the
robust estimation of variances by modifying the
defining equations for the restricted maximum
likelihood estimations under normality along the
lines of Huber’s proposal 2 .

The goal of this paper is also to investigate
the robust estimations in the variance compo-
nents model. In Section 2, we give the approxi-
mative maximum liklihood estimations of vari-
ance components , which also are the estimations
of variance components proposed by Forstner
(1979) and Ou Zigiang (1989) . In Section 3,
we give the influence functions, which are the
foundations of studying robustness properties .
Finally , in Section 4 we present the robust esti-
mation of variance components , which generalize
robustified least squares method.

2 APPROXIMATIVE MAXIMUM LIKELI-
HOOD ESTI MATION

Methods of estimating variance components
have been intensively investigated in the statis-
tics and geodetic literature, such as Refs.[ 2]
and [ 3]. The paragraph discusses the approxi-
mative maximum likelihood estimation of vari-
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ance components .
We consider the following linear model

T i=1,2,.,k
vij = XiiB+ ey Qw2 e (1a)
or Y = X8+ e (1b)
Cov(Y) = ¥ = diag[ L, , &1L, -, AL,]
(1c)

where  y;; € Ris the jth observation of the ith
group, its distribution is denoted by F,-j; yiis the
ith group observation ; x,-Tj € R? the jth row of

the ith group of design matrix X with rank

nx p
(X) = p, m+m+ —+n.=mn; BER,a
p vector of unknown parameter; 02, > 0, the ith
unknown variance component .

The observat/i\on error equations e}\re

V= Y- XBoro;=y;- xif  (2a)
where Vis an n x 1 residual vector and B the
estimations vector of parameter £.

If the observations Y are assumed to be nor
mally distributed, the liklihood function L(Y,
B, 02,-) of the observations Y with unknown pa-
rameters Band & is given by

1 X

n/2 1/2

@AD" (det 92T o

es exp - (Y- XB X' (Y- X
)

L(Y,B,7) =

The likelihood function may be written as
the product of two likelihood functions L, and

L5 |
L(Y,B,%) = Li(Y,%) Ly(Y,B %)
(3a)
with
Li(Y) = Li(Y,%)
_ 1
(2m 27 det Zdet( X" = x)]'>

X

1 AT s 1 A
exp - 5 (Y- X)T=(v- o) ()

and

L,(Y) = L,(Y,B, %)

1
= L X
(2m P2 (det( X" =" X)) 2
expl - IE(XTZ‘I Xp- X'>'v)"x
(XTEI X)'I(XTEI Xﬁ— XTEI Y)]
(3¢)

where

A T 5~ 1 1 oyT s 1

B=(Xx">2'x"'x">'y (3d)
By using the formula of Taylor series, we easily
prove that L; may be approximatively written as

Li(Y, &) « D2(F) exp(- Si/20)
(4)

where

k
r = Zri

i=1
ri = tr( Wy Q) Ty

i 1 a

S; = ZIIU%]‘= le(yij- xiTjB)z

j= j=
W, = 261 _ 261 X( xT 261 X).l XTzal
Q = dlag[o , e L, ,0)]

i

Zb = dlag[ 0120 Inl ’ 0220 I 02](0 Ink]

PRy
where @ is the approximative value of 3,1
the superfluous observation number of the ith
group , v;; takes the approximate values .

In order to estimate Sand 02, , according to
the principle of the maximum likelihood estima-
tion, L, and L, are to be maximized, i.e.,

|- X 1

j=1 i=1

(Y- XA = min (5)
and
i 24 Vij - x,-T,ﬁ N r,-anz,-
i=1l =1 G 2
N S; ”iln"%
= r,lzzl: 20% + ) = min (6)
or
;i k T
Z vij - X X
j=1 i=1 01— 01— vo
= X'>'(Y- X8 =0 7
and on
%4 vij = X8 iy - xiB ,
g g s !
j=1 1 1
Si 0 1,2 k 8
- 03 - rz - 1= 7=y 7 ( )
where
$(x) = P (%)

From Eqns. (7) and (8) , we obtain the approx-
imative maix mum likelihood esti mations of 2, 03
Ié: (X" xTxly (92)
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02 = Si/r, =12,k (9b)

It is an approximate estimation of variance com-
ponents by Fostner(1 979)[*1and can be found in
Ref .[3]. This estimation is iteratedly unbiased .
The approximative maximum likelihood estima-
tions of £, 03 can be concluded by the following
steps : by using estimations to improve the ap-
proximative values, Eqns.(9) are applied suc-
cessively, until the convergence of estimations
are obtained. Because the estimations Ié, 32, are
obtained by the extremal condition Eqns.(5)
and (6) , we can generalize them to obtain ro-
bust estimation , robust Bayes and robust e mpiri-
cal Bayes estimation for variance components .

3 INFLUENCE FUNCTIONS

We generalize Eqns.(7) and (8) and call
simultaneous M estimation of location and scales
any statistics (T,, st s S(nk)) deter
mined by k + 1 equations of the form

; k T
vij - XLy xj;
224 Gt T =0 (10)
~ < er g 5 (D)
j=1 i=1 n n
; T
LZJ iw(zfi‘Tn r, =0,
s, v
i=1,2,.-,k (11)
where
Y o~ oxIT R &
Yi iiln Yij ijtn Yij Xiidy
S(ni) 5(’1‘%{1’1 X S(ni)
Defining
T(F) = T(Flll"' Fln /"'/Fknll"'/Fknk)
SYW(F) = SW(Fy, Fy, -, Fy)
we have
33 M xIT(F)
s (F)
X
TPdF =0 (12)
SYU(F)

3 4 yij - XGTCF)

() ( F)
i=1,2,..,k (13)
Neither ¢ nor y needs to be determined by a
probability density as in Eqns.(10) and (11) .
In most cases, however, ¢ will be an odd and

dFIJ ——j r,-dF,-j =0

be an even function, the influence functions can
be found straightforwardly by inserting G,J y =
a- 9 F,j + &AMy for F,j into Eqns .(12) and
(13) , where Ayis the point mass 1 by yand0 <
£ <1 , and then taking the derivative with re-
spect to £at €= 0 . We obtain that k + 1 influ-
ence curves IF(y, F,T) and IF(y;, F,S'") (i
= 1,2, ..., k) satisfy the system of equations

Z Z o(2i))

5“’(F)

Z}Z} | ‘/(Zif)ﬁ IF(y,F,T)+

¢ (2)

<o d( Ay - F -

iZi .
*J—JilF 5(1)
[S“’(F)] (i B 500+

he

#( sz) [ S(’)(F)] ij

=0 (14)

SIF(y;  F ,5“)] E,,

Z“[ ©(z) - 1Ay, - Fy -
, x IF( ., F,T)
[EY STyl

X”(zij)mllf(y F, S“’)]dF}

=0 i=1,2,.k (15)
i - xi;T(F)
where z;.is short for z;; = -
i ij 5(1)(F)
Making use of Eqns.(12) and (13), we
have

ZZ s (z)

e 5“’(P)]
F,T)

zijg (i) + g(2i)
lelel S(l)(F)] xideij(]/)

U F(y) TRy,

(z
IF(y;, F,S") = ez
Cyi B.570) = Z Z s (p)

(16)

4 (i)y —

Z X (zi) zyd FyIF(y; , F,S") =
(2 x(z) - 1) SO(F) (17)
j=1

Because Fj;is symmetric, ¢is odd and yis

even. Defing T( F) and S ( F) Fisher Consis-
tency, we have
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T(F) = 8, SV (F) = g,

1

i= 1,2,k (18a)
[tzs Gz v wzprar =0 sy
j X (z)dF;=0 (18¢)

So, some integrals in Eqns .(16) and (17) van-
ish for reasons of symmetry and there are consid-
erable simplifications .

"i k T
/| !{i - xi[
IF(V'F'B)le:lZI‘/’ ansﬁ‘
j=1 i=1 t
Yi - szf
T -1 k
Xi:X:: O ds
iV i
#; dF; ]lezlj p x; (19)
IF(y;, F,9) =
2 Yi - xi,8
i ,=1j 2 -4
Zi: | oyi- x5B (yi - X,-T,ﬂ)dP
v A g0 "7
i-

i=1,2,...,k (20)
Therefore , we get the influence functions of
approximative maximum likelihood estimations
IF(Y,F,p = (X"2'x) ' XxT>! x
(Y- XD (21)

S.
IF(yi, F,q) = =g

i=1,2,...,k (22)
when k = 1 , we obtain the IFs of mixmum
likelihood estimations in the Gauss- Mark old
model

IF(Y,F,9 = (X"X'X"(Y- Xp
(23)
IE(YF, g = SOy gy

when k& = 1 and @ is known, the IFs of LS
estimations are Eqn.(23) . This is the result of
Huber(1983)!'7.

Based on the influence functions Eqns .(19)
and (20) , we can study local robustness proper-
ties , deepen our understanding of certain estima-
tions , and derive new estimations with prespeci-
fied characterstics . For example, based on the
influence functions Eqns .(21) and (22) , we can
obtain that the approximative maximum likeli-
hood estimations Eqn.(9) have an asymptotic
efficiency e = 1 , but are not B-robust, etc.

4 THE ROBUST ESTI MATORS

The extre mal condition of Eqns.(5) and
(6) can be generalized as

2 2z = min (25)

Q =
]:l i=1
k i 1
0 = Z[ YA zu# o rin @ = min
i=1 - =1 2
(26)
where () is the suitable function satisfying .

(1) pis symmetric, continuously different
and p(0) = 0.

(2) there exists ¢ > 0 such that pis strictly
increasing on[ 0 ,c] and constant on[ ¢, ] .

Taking derivatives of Eqns.(25) and (26) ,
we obtain the following equations :

i k a Zi») ~
IPILT S

j=1 i=1

i k
a Z; az,-‘
> 3| 24 1 2, |
j=1 =1 aZ,] Zi] aﬁ ] F
1 k
2
- g; w,-jx,-jv,-j 0 (27)
j=1 i=1
i a Zi’) r;
+ =
o 0% 24
K Z; Jz;. 7
\ d L A
j=1 Zij  Zij 07 20
Qs no_
) j=1 2dz!wijvij+ 2
i=1,2,...,k (28)
Zij o0 zi) 1 .
where wi; = 2(Z) = Az L is called
Zij az,-j Zij

weight factor >,

Eqns .(27)_and (28) _can be rewritten as
A
B = (X'"PX)"' X"PY (29a)

8= Nwpl =12,k (200)

ij=1

. . Wy Wi,
P = diag 2,
G G
Wiy wk”k
— ... 30
R (30)

From Eqn.(29) , we know that the robust esti-
mations have the same forms as the approxima-
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tive maximum likelihood estimators .
From Eqns.(19) and (20) , we also obtain
the influence functions of the robust esti mations .
IF(Y,F,T) = (X" MX)"' X"P x

(Y- Xp (31)
IF(]/I/FIOI) =
Yl’. 2
w; 05
pl Z 02 - 7 01
j=1 i
n; 2
Y S Sz + oy dE
1 > & ij wzj ij
j= i
i=1,2,..,m | (32)
where

EA ...M ...gﬁ R qknk
R R ]
i

’ =l/2/"'/k
9i =_[ b () dFy oy

The robust estimations can be concluded by

=
I

diag

the following steps :

(1) Because the approximative maximum
likelihood estimations have been determined in
section 2, we can make use of thlsz approximative
maximum likelihood estimation B to replace £,
thus we obtain the residuals Vij = Yij- x,-Tjﬁ. Al-
so we can make use of the approximative maxi-
mum likelihood estimation 32, to replace 03 in
Eqn.(30) .

(2) The weight factor w;; can be deter
mined according to Ref.[5]. For example:

when o z;j) = 23

ijs
wi; =1
when Azip) =1 zil,
W = 1
Y | zijl ’
T
[P i - xi,ﬁ
here z;, = —4 = =ik
ij a o

(3) Determine 02 by Eqn.(29b) and P by
Eqn.(30) . N

(4) Determine the B by Eqn.29(a)

(5) If the necessary convergence criterion is
satisfied, quit. Otherwise return to step 2 to
continue .

5 CONCLUSION

The work summarized here comprises: the
approximative maximum likelihood estimations
Eqn.(9) , the influence functions Eqns.(19)
and (20) , the robust estimations Eqn.(29) .
The paper also gives the computational steps of
solving the approximative maximum likelihood
estimations and the robust estimations .

It must be emphasized that the develop-
ments of the robust estimations of variance com-
ponents are very much preliminary. There are no
doubt many ways in which the work could be
improved, expanded and modified. The author
thinks that the robust bays and robust e mpirical
estimations for variance components are worth-
while studying .
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