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ABSTRACT A novel generalized conjugate- gradient algorithm for complicated equations of seis mic trace in-

verse problems , which is based on classical conjugate-gradient algorithm , has been put forward so as to im-

prove the stability of seis mic trace inversion, and to reduce inversion computation and me mory resources need-

ed. The algorithm brings high accuracy , fast operation speed and good ability of resisting ill-condition . In ad-

dition , by analysing sensitivity matrix according to the specific proble m of seis mic trace inversion, a new recur-

sive algorithm which needs no sensitivity matrix is developed to save memory greatly . Furthermore, in the

new algorithm , sensitivity matrix operation can be converted into convolution and correlation operations to

make the whole recursion to be imple mented completely by vector operation, which thus speeds recursion oper-

ation greatly .
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1 INTRODUCTION

Currently , seismic trace inversion has al-
ready been an important work in seismic data
processing for meticulous oil-gas exploration , es-
pecially for reservoir description and oil- gas later
al prediction. In order to improve the quality of
inversion results , i.e., accuracy, stability and
resolution, geophysists have put forward differ
ent inversion methods in different periods, such

[T and re-

as the early generalized linear inversion
cent constrained inversion by using geologic in-
formation, seis mic data and logs comprehensiv-
ely[z’ 3], etc. Certainly , the quality of inversion
results depends mainly on the advantages of in-
version method itself , but it is also closely relat-
ed to numerical algorithm for solving the inverse
problem . In accordance with ill-posed properties
of inverse problem, many mathe matical models
and their corresponding algorithms have been
presented“' 61 And the well recognized singular

value decomposition ( SVD) method, which is

@ Project supported by the China Postdoctoral Science Foundation

characterized by its absolute stability and strong
capability to resist ill-condition, should be in the
first place . But as well known, SVD algorithm
has defects of quite time-consumming and harsh
require ment for me mory resources. In order to
reduce computation and computer me mory need-
ed, meanwhile, to enable the numerical algo-
rithm to be applicable to more complicated and
more general inversion equations, Zhou!?) has
first put forward a generalized conjugate- gradient
algorithm , which does al most not lost any preci-
sion .

The purpose of this paper is to apply gener-
alized conjugate- gradient algorithm to the specif-
ic proble ms of seismic trace inversion. Inspired
by Ref.[1], we have presented some specially
generalized conjugate-gradient algorithms for
solving the specific proble ms of seismic trace
generalized linear inversion, stochastic inversion
and direct impedance inversion. All the algo
rithms mentioned above need not calculate the
coefficient matrix anymore, and the processes
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may be imple mented completely by vector opera-
tion, which therefore makes us reach the aim of
improving accuracy and stability of inversion re-
sults, and decreasing computation and saving
computer storage greatly .

2 GENERALIZED CONJUGATE GRADIENT
ALGORITHM

Consider the problem of solving linear equa-
tions

Ax=1b (1)
where A denotes a coefficient matrix, x a so
lution vector, and b a data vector. Particularly,
for inverse proble ms, Astands for Jacobi matrix
or sensitivity matrix , x usually means model up-
date vector, and b indicates residual vector
which is obtained by subtract model response
from observed data .

Eqn.(1) is often contradictious for inverse
proble ms, therefore , it is better to regularize it
to the following normal equations in sense of
least-squares .

AT Ax= A"b (2)
where AT denotes the transpose of matrix A.

It may be proved that: @ A" Ais sy mmet-
ric and positive se midefinite , hence Eqn .(2) has
a unique solution in the sense of L, norm ; @) the
condition number of matrix AT Ais the square of
that of matrix A, so that the ill-condition of
AT Ais more serious than that of A, so it is
necessary to modify Eqn.(2) to the following
damped normal equations

(ATA+Id) x= A"b (3)
where I is an identity matrix, d= (d,, d,,

.., d) Tis a vector with da mping factors d; >0
(fori=1,2, .., M).

Adding the term Id to Eqn.(2) will greatly
improve the equation system , and make the pro-
cedure of solving more stable. For linear equa-
tions shown as Eqn.(3), Zhou'”) has first de-
duced a generalized conjugate- gradient algorithm
which is similar to the standard recursive algo
rithm of the classical conjugate- gradient method

aj: (g(j) , g(j))/[ ( Ap(j) , Ap(j)) +

(p(j),q(j))] (4-1)

x0T = x(D 4 ajp(j) (4-2)
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BOTD = B - A (4-3)
g(jﬂ) = ATRG*D y(f”) 4-4

ﬁj+1 - (g(j+1) , g(j+1)) / (g(j) ; g(j))
(4-35)
p(j+1) — g(j+1) + ﬁjﬂ p(j) (4_ 6)
where (*,*) represents inner product, j means
iteration number in the process of recursion, p
and g are gradient and conjugate-gradient vec-
tors separately ; qf-j) = dipt?, yf-f) = dx\;
(fori =1,2, ..., M), and qﬁﬁ, pf-j) , yf-j) ,
xf-j) denote the ith ele ment of q(j) , p(j) , y(j) ,
x() respectively ; both a; and B+1 are scalars ,
which indicate update factors or update steps for

x and p respectively . Moreover, when j=0,

we have
O =p. Ax®
5)
© _ (0 _ AT (O _ () (
g —p —ART-y
where  x(® is the initial estimation of solution

vector. Generally, we also call h residual vec
tor, since the more explicit meaning of h is
W' =b- Ax") (6)

3 GENERALIZED LINEAR INVERSION OF
SEISMIC TRACE WITH GENERALIZED
CONJUGATE GRADIENT METHOD

Let s(t), s/(t) , r(t) and w(t) repre-
sent actual seis mic trace , model response , reflec-
tivity and wavelet separately. Sampled at dis-
crete intervals of At , rewritten as s; and s/,-( for

i=1,2, -, N), ri(for j=1,2, .., M),
and wy(for k=1,2, ..., L). Normally, M<
N, LS M.

According to Robinson’ s time-invariant
convolution model
N
s'i= Xy (i=1,2, ., Ny (7)
j=1
and least-squares principle, define the misfit
function of an inverse proble m as
N
_ /N2
0(9 *E;(Si' G
N M 5
=2(s;- Zriw. )
i=1 j- ]
= & - min (8)
then we get

M N
Z 7‘»2 w; -
j=1

N
) jwi—n:_zsiwi—n
i=1 i=1



Vol.9 Nel

Generalized conjugate-gradient algorithm and its applications <183 -

(n=1,2, ..., M) (9)

If we let V={ V,-/j} ={ w;. j} be wavelet

matrix , then Eqn.(9) may be condensed as ma-
trix form

Vivr=V's (10)

r=(r, rp, -, rM)T, s=1(s, Sy,

-, SN) T are both column vectors .

If we furtherlet A= VIV, b= V's, then

Ais a square , symmetric and positive se midefi-

nite matrix with dimensions Mx M, and b is a

column vector with dimension M. Therefore ,

where

Eqn.(10) may be even simplified as

Ar=1Db (11)
which is a similar version of the linear Eqn .(1) .

Eqn.(10) describes a linear inversion sys-
tem of seismic trace. In practice , the linear in-
verse problem of seismic trace is only a special
case of seismic trace inverse problems in ideal
condition. If the length of actual seismic trace
( N) equals the length of reflectivity function
( M), then theoretically, the linear inverse
problem of seismic trace has an exact solution,
hence , Eqn.(10) may be solved directly , no it
eration needed. Cardimonal®J(1991) has proved
that the above linear inverse problem is actually
equivalent to deconvolution. But in fact, since
real observed data inevitably include noise,
moreover , in order to improve the stability of in-
version procedure , we usually need add damping
term to coefficient matrix to overcome its severe
ill-condition, all of these may break down the
balance of original exact equations, so the in-
verse problem itself must be solved in iterative
manner in sense of least-squares. For this pur
pose , we modify the normal equations shown as
Eqn.(10) toa new version which fits the gener-
alized linear inverse proble m[l]( Cooke et al,
1983)

(V'V+1d,) Ar,= VT s, (12-1)
rn+1:rn+Arn (12'2)
As,=s- s, (12 - 3)

where n denotes iteration number within in
version procedure, As, and Ar, represent data
residual vector and reflectivity update vector sep-
arately , d, is a vector conserved damping factors
which may be gradually revised versus the
change of iteration number 7 .

Comparing Eqn.(12 - 1) with Eqn.(3),
we may obtain a recursive algorithm for solving
the above generalized linear inverse problem of
seis mic trace based on the generalized conjugate
gradient method

1 1
(Q()/g())

a, = ~
(Vp(l), Vp(l))+(p(l), q(’))
(13-1)
AR = arD ¢ ) (13- 2)
ROFD = (D ale(’) (13- 3)
g(l+1): yT R+ ]/(Hl) (13- 4)

A= (g, g /g, g
(13-5)

(+1) = (13- 6)

p g(l+1) +ﬁl+1p(l)
where
y (= d,(Hard ()
g’ (p=d,(pp ()
(j=1,2,, M (14)
and when j=0,
HO =as - var®
n n (15)
0) _ (0) _ /T 1,(0 0
t g(),p(),Vh()_y()
The principal computation for solving above

recursive equations comes from composing of ma-
trix V and calculating of Vp(’) , VArgql) and
VIR | In order to improve the operation speed
of recursion procedure, and save me mory need-
ed, we regard Vp( D and VA r;’) and VIh'Y as
vectors, and carry out their ele ments explicitly
for the specific problem of seis mic trace general-
ized linear inversion .

M
Ve (i) =T ow @)

(i=1,2, .., N) (16-1)
var (i) :2 wi A ()

(i=1,2, ., N) (16-2)
Vi () :é w; . A ()

(j=1,2, «, M) (16-3)

Obviously, it is unnecessary to preserve
wavelet matrix V in the procedure of computa-
tion, and the -calculation of vectors Vp( D ,
vAar(D and VT hD has been reduced to convolu-
tiomrtype operation described by Eqns .(16 - 1) ,
(16 - 2) and correlationrtype by Eqn.(16 - 3) .
Therefore , the whole recursion procedure has
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completely been vectorized, which may be han-
dled efficiently by modern array processors .

4 STOCHASTIC INVERSION OF SEISMIC
TRACE

To do seismic trace inversion using Eqn.
(12) , we must know a priori information about
damping factors. Formerly, they were figured
out by our experience , hence , the inversion re-
sults were influenced largely by subjectivity . But
it is shown by a vast amount of practice that the
damping factors have a great influence on the
stability and resolution of inversion results,
therefore, Zhou!®! start from the vie w-point of
probability, and on the premise of assumption
that both model variance ¢ and data noise vari-

ance (/,2 are random series with null average val-
ues , has established a nonlinear syste m equations
as the similar form of Eqn.(12) , and given its
damping factors the explicit meaning as

d,(j) = #()/ &)

(j=1,2, -, M) (A7)
where 902,1(]') is elements of model variance
vector at the nth iteration in Eqn.(12) .

It is thus evident that the distinction be-
tween seis mic trace stochastic inversion and seis-
mic trace generalized linear inversion lies only in
contents of the damping -factor vector. Conse-
quently , the recursive equations described by E-
qns .(13) ~(16) are absolutely applicable to the
problem of solving seis mic trace stochastic inver
sion. However, since the damping-factor vector
has been endowed with the specific mathe matical
meaning by expression Eqn. (17), so the
stochastic inversion is essentially different from
the generalized linear inversion, where the
stochastic inversion is a nonlinear inversion in the
strict sense .

5 IMPEDANCE INVERSION OF SEISMIC
TRACE

The problem of all methods which use the
results of reflectivity inversion to reconstruct a-
coustic impedance of underground media through
recursion formula is that, the direct component

of reflectivity is often hard to control, and be-
cause of accumulation of errors in the recursion
procedure , a small error of the direct component
of reflectivity may result in a serious shift of the
reconstructed acoustic impedance curve . Tosolve
this problem , the model-based inversion method
which recover acoustic impedance directly is de-
veloped in recent years .

Zhou!®) had revealed the impedance inver
sion of seismic trace which has the following
form of inversion system equations in a similar
way to Eqn.(12)

(VIV+1d) Az, = Viaz, (18-1)
Z,41 = 2,1t Az, (18 -2)
As,=s- s, (18 - 3)

where  z,, z,,; are impedance vectors to be
recovered at two neighbouring iterations, Az,
represents a vector of impedance updates .
In this case, the ele ments of coefficient ma-
trix V should be correspondingly modified to
Vii= &) winj- m(j) wi; (19)
where
&(j)=2z,(j-1)/
Czo(p) + zu(j- DI
m(j) =2z,(j+1)/
Czo(p) + zu(+ 1) I

We may use the recursive algorithm of gen-

(20)

eralized conjugate- gradient method which is sim-
ilar to Eqns.(13) ~ (16) to solve this inverse
proble m also, but the expressions for calculating
the coefficient matrix related vectors Vp( D ,
va z;’) and VT h" must be modified .

6 RESULTS FROM FIELD DATA TEST

The purpose of test: @ to verify the validi-
ty of our inversion algorithm obtained by apply-
ing generalized conjugate-gradient ( GCG) algo
rithm to the specific inverse problem of seis mic
trace ( We simply call it “specific algorithm” in
following text) ; @ to compare some technical
indices ( such as accuracy, operation time and
me mory needed, etc.) of SVD algorithm, GCG
algorithm and the specific algorithm. The field
data we used, shown in Fig.l , is a windowed
seis mic time section corresponding to CDP 1 675
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~1725 and time 1 250 ~1 650 ms on a line from
North China area,
amplitude preserved processing. There is a well
located at CDP 1698 which may be used to check
the results of seismic inversion. After inversion
with the GCG algorithm, we get the final model
response shown in Fig .2 . Comparing Fig.l with
Fig .2, we may easily find that they are in good
match . Fig .3 illustrates the final impedance sec-
tion as a result of inversion, which may help ge-
ologists even better to delineate seis mic and geo-
and to determine lateral varia-
The bold curve in-

and is obtained by using of

logical interfaces ,
tions of reservoir properties .
serted in this map shows the actual impedance
Comparing the results of
we may ob-

from the welllogs.
impedance inversion with well-logs ,
viously see that the results of inversion coincide

with actual impedance very well, excepting two
misfits at segments 1520 ~ 1540 ms and 1560 ~
1580 ms possibly due to multiples. The good ef-
fect of this example indicates that the inversion
algorithm we deduced is completely valid .

In addition, we have also used the previous
SVD and GCG algorithms to solve the same in-
verse problem as above example numerically.
The results obtained are fully identical with Fig .
1 to Fig.3 correspondingly . It is invisible to i-
dentify their differences with naked eyes at all .
But the two technical indices , operation time and
me mory needed , different .

Table. 1 gives us a direct perception on some

space are quite
technical indices of the three recursive algorith ms
used for the example. According to Table.1,
when replaced SVD algorithm by GCG algort

CDP 1680 1690 1700 1710 1720
1.3 } . ) 1.3
14— nx 33 1.4
1.5 1.5
16 333 15.6
Fig.1 A windowed seis mic time section on a line in North
China area, there is a well located at CDPI 698
g
B e A A A A AR R A E AL A R A A AR AL LN A R L 1.5
3 «2222222«(«23333333§§2§2§§32§§§§§§§?§3

ECCEEEX

Fig .2

Final model response of inversion
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CDP 1680 1§90 1700 1710 1720
L iiééiéééﬁéééééé%ééié{ FRIERRRRELARERRELERETLLLITEILI AN
.3— t .
1.4—%% 1.4
5SS
(%
1.5 1.5
1.6 1.6
8 S
Fig.3 Final output impedance section of inversion, the bold curve
inserted shows the actual impedance from well-logs
Table 1 Comparisons of technical indices of mic trace to be inversed, the specific algorithm is
three inversion algorith ms incomparably superior to SVD algorithm .
hn . . . .
Technical SVD GCG Specific Table 2  Approximate estimations of
indices algorithm algorithm algorith m
operation time and me mory
Accuracy 0.9837 0.9818 09818 require ment for three different
Operation 35 6 43 10 inversion algorith ms
ti me ’ ’ ’
Technical SVD GCG Specific
Me mory indices algorithm algorith m algorithm
space 41107 10908 909
i (6] ti
(unit) ff;i}"“ O( NY) O(N) O(N»*L/N
For the case : trace length( N) is 101 samples and wavelet
length ( L) 21 samples, where accuracy is measured by Me mory
space 4N*+3N N +7N 9N

correlation bet ween inversion results and well-logs , opera-

tion time is related to that of specific algorithm spent .

thm, the operation time and memory space
needed have been decreased significantly, espe-
cially the operation time has been reduced essen-
tially, while the inversion accuracy has almost
not been affected. Furthermore, when applied
GCG algorithm to the specific proble m of seis mic
inversion, the accuracy has not been changed
any more , and the operation speed has been im-
proved in a certain degree, but the me mory re-
quirement has been reduced greatly. Table 2
de monstrates the approximate estimations of the
operation time and the memory require ment for
the three different inversion algorithms. As can
be seen, after replacing SVD algorithm by the
specific algorithm deduced by this paper, both
the operation time and the memory require ment
are reduced in one order about N . This indicates
that, with increasing of the length ( N) of seis-

(unit)

* where O(*) represents “order”
7 CONCLUSIONS

By applying generalized conjugate-gradient
algorithm to inverse proble m of seis mic trace , we
have obtained the recursive algorith ms for differ
ent seismic trace inversion methods. As com-
pared with the previous well-recognized S VD al-
gorithm, new algorithms possess following ad-
vantages :

(1) Because of applying generalized conju-
gategradient algorithm, the calculation a mount
of inversion has been dropped from order O( N3)
to O( N*) , that is, has been reduced in one or
der. Furthermore, because of decomposing ma-
trix operation into vector convolution and corre-
lation, the calculation amount has been even
more reduced. This is significant to the present
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large-scaled seis mic inversion .

(2) Since the coefficent matrix needs not to
be saved, the require ment of computer memory
has been dropped one order. This makes the re-
quirement for computer resources no longer
harsh, and makes the imple mentation of multr
channel inversion technique to be more conve-
nient .

(3) The accuracy of inversion results is

hardly ever influenced by algorithm itself .
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