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Fig. 1 World energy composition in the next 100 years'
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Fig. 2 Forecast of future clean energy system
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Fig.3 Developing process for energy storage systems
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Table 1 Comparison of ion radius, crust reserve, cost, and gravimetric capacity of Li, Na, and Zn
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Fig. 5 Crystal structure of ABX;-type metal halide perovskites®”(a) and correlations between tolerance factor and crystal structure
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Fig. 8 Crystal structure of Ruddlesden—Popper (BA),(MA),Pb;l;y and (BA),(MA);Pbgl;; layered perovskites(a), experimental
current-density—voltage (J—V) curves under an AM.1.5G solar simulator for planar devices using 2D (BA),(MA);Pbyl,; perovskites
as the absorbing layer at optimized thickness of 230 nm (The inset shows the device architecture(b)); photostability tests under
constant AM1.5G illumination for 2D ((BA),(MA);Pb,l;3; red) and 3D (MAPDI;; blue) perovskite devices without encapsulation(c)
and with encapsulation(d); humidity stability tests under 65% relative humidity at in a humidity chamber for 2D ((BA),(MA);Pb4l,;;
red) and 3D (MAPDI;; blue) perovskite devices without encapsulation(e) and with encapsulation™'(f)
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Fig. 9 Typical J=V curves of FAMA, CsFAMA and KCsFAMA perovskite devices tested under 1 sun AM 1.5G with a scan rate of

10 mV/s and a mask of 0.16 cm*(a); Long-term stabilities of the best perovskite devices stored in an ambient air condition without

encapsulation for more than 1000 hours, and average humidity is about 10+5 RH%(b); Photovoltaic performance of 6 cmX6 cm

module cells. Photograph of the 6 series connection cells(c); J-V curve of 6x6 cm® large size module tested under AM 1.5G. The

active area is 20 cm?*?l(d)
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Fig. 10 Schematic illustration of diverse methods for perovskite solar cells, including one-step spin-coating method, two-step

spin-coating method, sequential deposition and sequential vacuum depositiont’?)(a); Slot-die method"*(b); Roll-to-roll processt™}(c)
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Fig. 25 Crystal structures of a-MnO,"'*)(a), anodic and cathodic processes of Zn/a-MnO, battery!'*%(b), XRD pattern of a-MnO,

electrode discharged to 1 V and charged back to 1.8 V in first cycle(c), cycling performance at C/5 (1C=308 mA-h/g) and elemental

analysis of dissolved Mn®" ions in the 2 mol/L ZnSOy electrolyte during cycling(d), cycling performance of a-MnO, electrodes with

and without 0.1 mol/L MnSO, additive in a 2 mol/L ZnSO, aqueous electrolyte(e), long-term cyclic performance of a Zn/a-MnO,

battery using an electrolyte with a MnSO, additive®*(f)
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Fig. 26 H' and Zn?' insertion/extraction mechanism: (a) Discharge galvanostatic intermittent titration technique profiles of a-MnO,
electrode; (b) Discharge curves of a-MnO, electrode in 0.2 mol/L MnSQO, solution with or without ZnSQO, as electrolytes; (c) Ex-situ
XRD patterns ofa-MnO, electrode cathode at depth of discharge at 1.3 and 1.0 V, respectively[lss]; (d) Schematic of the incorporation
of K" ions stabilizing the Mn polyhedrons in a-K,sMngO; () Element analysis of dissolved Mn* in a 2 mol/L ZnSO, aqueous
electrolyte during cycling of a-K,sMngO s and a-MnO,; (f) Schematic illustration of H' diffusion into a-K,sMngO,s with perfect

structure and oxygen defect structure!'®”
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Fig. 29 Crystal structures of 5-MnO,'*)(a), ex-situ XRD patterns of J-MnO, cathodes after 1 and 5" discharge cycles(b), XRD

patterns of birnessite(c), cycling performance at 500 mA/g of birnessite!'72(d)
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Fig. 30 Crystal structures of 5-MnO,!"’*(a), schematic illustration of Zn>" insertion/extraction in a spinel ZnMn,O, framework and
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Fig. 32 Scheme showing reversible water intercalation into Zn,sV,0s-nH,0, and the water deintercalation accompanying Zn>"

intercalation upon electrochemical discharge(a), comparison of the Ragone plot of Zng,5V,0s-nH,O battery with two other known

materials for aqueous ZIBsmS](b), ex-situ solid state '"H NMR and the proposed crystal structures of pristine V,05-nH,0, V,05-nH,O

after charging to 1.3 V, and discharging to 0.2 V!'*](¢), rate capability and cyclic performance of Li,V,0s-nH,O!*7(d)
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Fig. 37 CV of Zn anode in 1 mol/L Zn(CF;S03),(a), CV of Zn anode in 1 mol/L ZnSOy4(b), Zn stripping/plating CE in aqueous

Zn(CF;3S03), electrolyte with different concentrations (1-4 mol/L)!">*)(c), representative Zn>*-solvation structures in the electrolytes

with 1 mol/L Zn(TFSI), and three concentrations of LiTFSI (5§ mol/L, 10 mol/L and 20 mol/L)(d), SEM image and XRD pattern

(inset) of a Zn anode after 500 stripping/plating cycles in 1 mol/L Zn(TFSI),+20 mol/L LiTFSI(e), cyclic voltammogram of Zn

plating/stripping in a three-electrode cell at a scan rate of 1 mV/s2%(f)
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Fig. 38 Schematic diagrams for Zn deposition on a bare Zn electrode and a PA layer coating Zn electrode®'(a), schematic

illustrations of morphology evolution for bare and nano-CaCOj;-coated Zn foils during Zn stripping/plating cycling?®!(b)
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Fig. 39 XRD pattern, CV curves and EIS of electrodeposited Zn array-coated graphene foam[zls](a), SEM images of Zn-coated

carbon cloth anode*'?(b), SEM image of Zn-coated carbon nanotube paper anodet*"*)(c), SEM image of Zn-coated carbon nanotube

yarns?'4(d)
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Research progress of key materials for energy photoelectric
conversion and large-scale energy storage secondary batteries

LIANG Shu-quan', CHENG Yi-bing®*, FANG Guo-zhao', CAO Xin-xin', SHEN Wen-jian?,
ZHONG Jie?, PAN An-qiang', ZHOU Jiang'

(1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, China;
3. Department of Materials Engineering, Faculty of Engineering, Monash University, VIC3800, Australia)

Abstract: The excessive use of fossil energy has triggered a series of serious environmental problems, which may bring
very serious environmental damage before the depletion of fossil energy. The developments of clean new energy and the
matched new technologies for efficient energy storage are of great significance. Solar energy is environmentally friendly
and inexhaustible. “Photovoltaic + Energy Storage” will be the most promising solution to the energy problem. After
years of research, perovskite solar cells have been recognized as the most promising systems, but their stability and
environmental issues need to be addressed urgently. In terms of energy storage, expanding the traditional lithium-ion
battery into large-scale energy storage must overcome constraints of resource and safety. Sodium-ion battery and aqueous
zinc ion battery have great development potential in the field of large-scale energy storage due to their obvious
advantages in resources, cost, safety and environmental friendliness. This paper reviews the latest research progress of
related key materials, including the perovskite materials, key cathode and anode materials for sodium/zinc ion batteries,
in the hope of providing guidance for the development of high-quality perovskite solar cells and large-scale energy
storage secondary batteries with low-cost, high-energy, and long-life through the analysis of the intrinsic relationships
among material composition, structure, and performance.

Key words: photeelectric conversion; energy storage; solar cell; sodium ion battery; aqueous zinc ion battery; material
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