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Fig. 1 Local structures in undercooled liquid Ga-In alloy by

using X-ray absorption spectroscopel®”!
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Table 1 Surface tension of highly undercooled liquid alloys
Alloy T/ K oo/(N'm ™) % (1074 N'm "K) Temperature/K
NizgSize ¢*” 1488 1.693 —4.23 1306-1995
Ni-5%Sn B 1701 1.503 —6.43 1464-1931
Co-25%8i PY 1607 1.604 -4.03 13842339
Fes7.5Cu;3Mog 512 1703 1.588 -3.7 1577-1783
Fe75CuysMo, 1693 1.587 -4.0 1575-1815
Fe;;.5Cus sMo,s 1703 1.661 —4.1 1573-1914
TigoAls 1753 1.094 -1.422 1429-2040
TissAlys P 1814 1.131 -1.812 1555-1954
TisoAlsNbs* 1837 1.138 -2.018 15692015
Ni-5%Cu-5%Fe-5%Co-5%Sn-5%Ge!> 1652 1.460 —6.361 1295-1773
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Fig. 4 Thermophysical properties for undercooled liquid

Zr9; 5Sig g alloy: (a) Cooling curve; (b) Specific heat!®”!
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Fig. 7 Mechanisms of grain refinement in Al-Cu alloy"*: (a) TEM micrograph of quenching sample in transition region; (b) Size

distribution of ZrCu(B2) and Zr,Cu particles; (c) Selected-area diffraction pattern of area e in Fig. (a); (d) Typical HRTEM image of

area e in Fig. (a)
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Table 2  Maximum undercoolings of liquid alloys in
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Fig. 8 Crystal nucleation of undercooled liquid Nb in ESL
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(b) Probability distribution of undercooling from 200 heating-

cooling cycles
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Table 4 Maximum dendritic growth velocity in different alloys

Alloy D;I;ilzi;ic MaximuZlTiiciic(rcoolion, ATo T, Maximt:}t:a xg/r(onjvst{ll ;/elocity,

Pure Fe*'®! Fe 280 0.15 69

FesoCus, alloy?' AFe) 261 0.15 15

Fes,Tiy, alloy?!” Fe,Ti 315 0.19 478 X107

Ni-5%Si alloy!'*" a(Ni) 304 - 15

Ni-5%Cu-5%Fe-5%Sn-5%Ge alloy™'® a(Ni) 405 0.24 28

Ni,Zr, alloy!"*® Ni;Zr, 317 0.19 0.45

Zro5Sis alloy™"! aZr 451 0.23 17

Pure W56 w 733 0.20 41.3

W-Ta alloyt*® (W) 773 0.23 35.2
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Fig. 16 Surface waves on floating Ni-Sn eutectic alloy?*®: (a) Surface waves of Ni-Sn eutectic alloy solidified under acoustic

levitation condition; (b) Solidification microstructures across waves; (c) Eutectic growth velocity vs interlamellar spacing;

(d) Surface wavelength vs interlamellar spacing
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Fig. 21 Precipitation of ' phase in Mg-10Gd-3Y-0.4Zr alloy™*": (a) Bright-field image taken along [0001], zone axis; (b) Bright-

field image taken along [IOTO]a zone axis; (c) [0001], zone axis microdiffraction pattern recorded from f’ precipitate; (d)

Schematic representation of §' precipitate morphology and theirarrangement on [1120] |, of a-Mg matrix
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Fig. 23 Bimodal micro/nanoporous metal fabricated by Gasar and de-alloying process**): (a) Schematic diagram of lotus-type
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JfE 71 1¥) FeCrNiBSiNb I FeCrBSiWNb & 412, 12
re 1R AR A FRE AN FES e

IR EWTSER LR RE ST M T RS
PERTAF o MEEEABESL AR B & AT, S
A BB B WA X W
NdgsAljgFeys Co, ﬁ%ﬁﬂﬁ%ﬁ{ﬂ?m”o il 2% T B E AT
TR EZKZ 409 K ) PreoCuxNijoAl g BAREf &4,
A EAATIE 5 mm! ™. B REWEES &
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FALREGWIEVERAT y, RIAT DUE IR — REAE BRI
JER (0 363 KXz RHEAT e . 25l frf, R46
MBI . QIR E R FRE, ST AR 5
Ha I RARR 5  Ege . gt — A TR0,
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Wi 2450 4250 MPa, FMEARE )y 210 GPal** ),
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Fig. 24 14531,

Cerium-based amorphous metallic plastic
(a) True stress—true strain curve of 2 mm diameter
Ce;pAl oCuyg bulk metallic glass rod tested under compression
at RT and at 363 K (Inset shows the starting sample, 2 mm in
diameter and 3 mm in height, and the sample compressed at
363 K, 5 mm in diameter and 0.5 mm in height); (b) Bulk
metallic glass rods formed into letters by simple manipulation

in near-boiling water
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Table 5 Mechanical property of bulk metallic glass
Alloy Elastic Yield Ultimate Fracture Maxi_mum
modulus, E/GPa strength, 6,/MPa strength, 6,,,/MPa  strength, o/MPa strain/%
CoysFeyTas 5By 5 268 - - 5185 -
(Feg 75B0.2Si0.05)9sNbs *7! 180 3160 - 3400 -
[(FeosC0p.1)0.75B0.2Si0.05]0gNb4 ") 190 3820 - 3900 -
[(Feo.sC00.2)0.75Bo.2Si0.05JosNb* 7 205 4050 - 4170 225
[(Fe.7C003)0.75B0.2Si0.05]osNbs *") 210 4100 - 4200 -
[(Feo 6C0.4)0.75B0.2Si0.05]0gNb4 ") 210 4100 - 4250 -
[(Feo.sC00.5)0.7sBo.2Si0.05]96Nb4[457] 210 4070 - 4210 -
FesoNisP;;C, " - 2250 - ~2150 22
ZrgTi14.67Nbs 33Cus 56Nig 44Beyo " - 1150 1270 - 10.5
Tis4 85Z130.73C s 34C04 46Bes ¢ - 1684 1684 - 2.0
Tis7.73Z131.33CU7,67C04 07Be 0,4 - 1634 1634 - 1.9
Tiso.50Z131.92Cu7Co3 goBe 65 """ - 1605 1630 - 2.3
Ti3 44Z132.52C5 33C03 31 Beq 4 - 1577 1602 - 3.2
Tiss3Zr33,1Cus 65C02.05Be ") - 1411 1470 = 3.8
Tiso.16Z13372CU4.05C0; 54Beo o ! - 1259 1305 - 5.5
Tis2.01Z13432Cuy 31C05 16Beq ") - 1189 1307 - 6.2
Tisy §7Z13491Cu3 6401 75Bey Y - 1046 1326 - 9.1
Tis7.72Z135 51CU2.07C0; 30Be 4V - 1026 1339 - 8.0
Mgg Cug 3Zny ;Y 51 19.2 - - 1163 21.6
CusoZr3TijoNb,; ") 140 1770 2000 - 3.6
Zr3,6Ti31 4Nb;Cus oBeyo 4% - 1510 1560 - 5.7
Zr39 6Tiz39Nb; ¢Cug 4Beyy 514 - 1245 1287 - 9.1

2670 MPa Fl 22.5%$2 =1 % AICoCrFeNiZr g 1 1425
MPa. 2920 MPa Fll 31.7%*"*, 24/b& C M B /R
SRR IR S A 2R, 2P E TR AT
kg BRI BRI - 76 AlFeCoNi Bl & &R B t&,
B J5 2 TEHC FCCL M FCC2 LA, KR &
£ G ISR AN R PERL

R Sl G B AR 2Rk AL 0 2
PE, EUR B TS LR DA R 32 B A5 M i —Fh
G4, HIERAEEE, AR RO b
AFNF H R TAL R . STk, Ao ns gl
T —MHAEERIHEAE, ERLEREENE
MRS A4S, 1ZBEE&K R AL E S
EE A ST, AT DB s AR AR S A S R
IR A R RIS s o AT, B R 47 s
e, FEMFIBSEIE S50 Nl I AR ARG SE R, mTRAR
35040/ N e R SR . B RO R s K
KB/ T il e A AE i 4P ) A i s, 5 4R
B A SR N T, M ERA S E

LR & i ERe, Wik 25 Fios.

XN 5 1 B < AE il A5 R AR T TR R A T A )
AT, HEnR P PE R 2 M RN B 75 2225 RE
BN K TAEPEIBEH % T NbCrMoTiAly s
NbCrMoVAly s+ NbCrMoTiVAly s+ NbCrMoTiVAl 5Sig 3
M A4, EEIN Cry Al Si GRRIREAE S
FIPTEEMERE, KL 1573 K WA )2 R I VEAT
N

5.5 mEMEAR

WEMEAPRIE S B BT HUBRE AR H AT B B
R o AR T, R B B G %% 1 s A
S VR A e 12 AU R (1 Ry [ 18499
5.5.1 L. TEREA R

T e 2 OSR B g ] 575 7T T FeCoPCCu
MZH SR RO, 45 T 4K AR O 5 (0 S
PEfE. 1E FeGaPCB K#AEd:A & H A Si #l Mo 7t
R DR ABAHXEE, H&&RAEE 111~
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Fig. 25 Mechanical properties of AICoCrFeNi, ; eutectic high
entropy alloy: (a) Room-temperature tensile mechanical

properties; (b) High-temperature strengthm”
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Fig. 26 Measured magnetostriction and tensile fracture strain
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for common Fe-based magnetostrictive materials
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Progress and prospect of
solidification research for metallic materials

ZHAI Wei, CHANG Jian, GENG De-lu, WEI Bing-bo

(Department of Applied Physics, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract: The alloy solidification process has experienced a long evolution history to transform from a kind of ancient
metallurgical technology into a branch of modern science. It developed into a relatively consistent academic field of
materials science in the second half of last century. With the advent of diverse high technologies and especially the
coming of new information era, the solidification science and technology meet with another age for rapidly reformed
development. The objective of this work is to summarize the major achievements of solidification research in the first two
decades of the present century and provide a concise perspective for its future advances. The following five aspects are
addressed in various details: the microstructures and properties of liquid alloys, the crystal nucleation and process
modulation, the evolution kinetics of solidification structures, the process mechanisms of extraordinary solidification, and
the solidification forming of new materials.

Key words: liquid alloy; crystal nucleation; directional solidification; rapid solidification; extraordinary solidification;

microstructure evolution
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