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Table 1 Experimental raw material ratio
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volume/L  media to material agent
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Fig. 1 SEM images of sintering and

heat treatment: (a) Sintering state;
(b) Sintering+quenching; (c) Sintering+
cryogenic; (d) Quenching+tempering;

(e) Quenching+cryogenic
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Fig. 2 Watershed segmentation image(a), equivalent circle diameter distribution map(b), WC/Co phase boundary extraction

diagram(c) and total interface extraction(d)

w2 PG MAMERARGSUAT AR FEEASRIHEE, X R IR & &R PR RN B e
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Fig. 3 XRD patterns of sintering and quenching and
cryogenic
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Fig. 4 XRD patterns of tempering and cryogenic treatment
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Table 3 Lattice parameter of WC and a-Co

WC(HCP) a-Co(FCC)
Heat treatment

a=b/A c/A a=b=c/A
Sintering 2.89415 2.82845 3.55296
Sintering+quenching  2.89762 2.83125 3.55491
Sintering+cryogenic ~ 2.89434  2.82863 3.55301
Quenching+tempering 2.89972 2.83291 3.55697
Quenching+cryogenic  2.89486 2.82921 3.55374




29 4555 8 A

HOEW, 5. PUCHN S Z140.5 MG A S TR R 1689

RIAEAE S 3 A 4 AT ST AW ASAAT & o R K
JG, a-Co MM HEARRNEE M T o-Co HIEFA NE
W, CJET, H PRI G H AT H T OR B 3=
I, BUHE a-Co Bk LML o RV 264 T IR T 109
H T AR AR PR BE 2% P AR MERE AT, DRI, IRV AL
a-Co [ MIS 5 e ah SRS Z SRR

23 RO

B 5 FToR Ao 4t 45 B FAAR B 5 A5 AR0RE 1A 7 11 P2 55
B, 7R 5 rpaRIHFRE. ST ARIBAR S0 358 o0 s 5 A
WC UKL, R AT (3 0 RS A Co 2, Rk
MR A AR . B S()Fn ks &l
TES, T LAE BB ECh P, RMA DR S
TAAE, BT AW BR AR AR WC SRR 5 4
(TR, A A D B TR . R AR T R
T WC Hl Co 7E AL THEF 22 F 850K, R AH
TRRER G KAWL B 5(0) T RS AT KA B
Il S, FTERHEE SRS, s
EIZ, HHILT —SegLp, XU LB A 4 1k

ELZCE R PN A PR N N S-S e P R
FEAE RV HI WC NIPEF ZEHAT T Co HHMIWAE, B
i Co ASREIRIULAE ™ A AL, EAMGRE IR
TEF o3 A AN K ST R 7 RS T B e ai LR S
INT, [ S (o) BT et s TR VA KL BRI T 11 T35,
HE5KE 5 kiAW BT 24257, i
WL AR B S K G Bl kA
(K TS, AT SR W I A B 2 3R T B 1) We
arkL, (RIS AAAESLRR . LhAh, fE WC RURGZEAR Jt o i
WL T B 1 A ORI PTR), XL F R
Bl K Co AT B AOTREU A BT, XL
Ffem eIt mERIER. B sEePmERE
TR AEEL T LS, TG BB R 3 2O A
MR .

24 NFMREE

R A IVNREE A MR B RE DA IO RERE . 2%
FE. BEREANGTE SRR . WK 4 WTLAE R, Bedh il
AT S A4 BT, B LR . I

E5 SilFem g
Fig. 5

Fracture morphologies of each
specimen: (a) Sintering; (b) Sintering+
quenching; (c) Sintering+cryogenic;
(d) Quenching+tempering; (e) Quenching+

cryogenic
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Table 4 Performance of ZL40.5 cemented carbide under

different heat treatment

It Bendi

Hardness Density/ Coba. ending

Heat treatment (HRA) (gom’) magnetic/ strength/
£ %  MPa
Sintering 82.5 1335 2147 2230

Sintering+quenching  82.9 13.34 20.15 2318
Sintering+cryogenic ~ 83.1 13.33 21.42 2470
Quenching+tempering  83.2 13.36 20.21 2520
Quenching+cryogenic  83.2 13.36 20.02 2406

BREAGEMY SRS 8RS, #eEIAS
AL RAEARN, HIAK G 4 b S5
AR, MO B (AR AR N . R Kb S, P
SR 2230 MPa $E7H%] 2300 MPa; IEERA AL )5,
PUS R B FR T3 2470 MPa; XK FFREEAT [F] K Ak
S P RN 2520 MPa; REREA LG, FiaoR
J£R 2400 MPa. e sl 25 18FE AR K 0] KA B 5 4025 9
R E, ET 13%. PUSsaEH TR 4 &)
PERI— e, REE&ZRMBYIN . R, &
RLJJHIEE AR, HFE R T WC SRR 400
THOL ABHRE . REEEAH I L SR S IR ) o K IR
K, WC SRR SFARAR S, AR # B EE
i, BIULFRIR T &4 A N T8RRI R A, D RS0
MK JEREEEA T a-Co & BT W IR -1 [ 75 B KR
Hahn, EEVE SRS AP A SRR . A,
51K B T 0 43 IR K = A R P R g, L IEL KB AT
(YR B 53 A T R P AR SR EIRAY, AT & 4 1 5
WP, Fk, BEARE KR KAREE fE RS 25 N AL
BRI, RN T RauEsE, (HHX G SR
FBE (R G e 2N TR S5 AR A I DTk, e &t
588 KRR i

25 BRENMSH

P T 5 4 K TR VA IR A AR K v 2
H Co HIEZIK R2E02 WC 1 3 £, #WEIEF, Co AR
AFEPERT WC 1, HUbSF=ARRN T, HAokids
HH Co ZRNRLNFg, WA WC SZEI R ). FRARM
JIXF TAF () 15 Ve Re AV F 7 A5 46 BB, ARSI
I bk £ WC AN & AR AR N ), HIRKA WC & &
FAXTT Co mifg 2 HATHIGE S AR my FLATS 6 [A]
FWEN, ARITHATHRRNMNE. [N, &4
W WC FHSE LA TEINEEE, NEHOEfaEE D, e
358 0k 4% I8 0 P A e AR T S

ACHRA X FHERATHRENE WC AHBIR R
77, FCIEARJFE R DL B AT S 2R A N IR AR e
RIS 5551 7 A P 11 B U N A INAEKE S eil T W K|
AR F. FBEK 0.15406 nm (1) X 572k, SEJ5LL 00
15°, 30°. 45°UYIRNST A v HRAE2030E b, DU AH Y.
(IRTE A 20, K 20 X sin2y BIRIE M, EiER03)
R H R IR oo

o=K-M 3)

=— 20+ 0) cot 6, %0 4)
d(20)

= 5

9(sin’ ) ©)

A Ev o2 iRV ERCR AR LE ;s 60 NTER /)
AT hi RS . K R SMPREAR ., i@ fiT i
10 HKL A7 5%, 23 5 IIRTHT IR B2, K 9 5E(E.,
M 0N 26 —sin 2y EARRER, @I MAAH KA M AL
S WC BR BN 5 s

RS OAFEBACETHR AR

Table 5 Residual stress under different heat treatment

Residual stress/ Stress error/

Heat treatment

MPa MPa

Sintering —427.2 +15.7
Sintering+quenching —528.8 +23.1
Sintering+cryogenic —514.8 +28.8
Quenching+tempering -507.9 +17.3
Quenching+cryogenic —521.4 +21.4

MR 5 IR K S IR AL B il pe 2 AR
AR AR N3G, HE KA PR i, X ks
PRI BRA AL BRI (R 5 AR N A AR K
Ja W {E Co W REREREIE N, H Co AR ATTELA],
WK N T3 K. BBAh, VKR WC R AL R A
fift, CABE AL Co A, PR T HLIA RN 114
o, R L R Y PR AR R o-Co
[ e-Co [IREAZ, P AEHIROM N /3 Bl 3R A% IS N A7)
S, 1 HA RS T, SeRmRERZ
WHEBERINZ , TR, IV i RN A 75 R i L
T

3 #Zig

1) B A e sl AWK R BESGE WC snkiES,
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Effect of heat treatment on microstructure and
properties of high cobalt Z1.40.5 cemented carbide

DONG Ding-gian" >3, XIANG Xin', HUANG Xin-jie', HUANG Wei’, SHI Kai-hua®, ZHANG Li’

(1. College of Mechanical Engineering, Sichuan University of Science and Technology, Yibin 644000, China;
2. Zigong Cemented Carbide Corporation Limited, Zigong 643011, China;
3. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China)

Abstract: The effects of heat treatment processing on microstructure of high cobalt ZL40.5 cemented carbide synthesized
by gas pressing sintering were investigated using scanning electron microscopy (SEM) and X-ray diffractometry (XRD).
Based on the crystallography theory and combined with Image J and Jade software, the properties of the alloy, such as
hardness, bending strength and residual stress, were measured. The results show that the quenching treatment makes the
morphology of WC grain round and smooth, reduces the occurrence of stress concentration and reduces the source of
fracture. After quenching and tempering, the content of a-co in the bonding phase increases greatly, WC adjacency
decreases, and the strength and toughness of the alloy are improved while the hardness is guaranteed. The fracture of the
alloy after heat treatment is mainly in the form of intergranular and ductile composite, after quenching and tempering, the
surface compressive stress increases to the highest.
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