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摘  要：为了揭示镁合金晶体微结构与孪生变形之间的关联性，采用伪滑移模式描述孪生变形，建立包含滑移与

孪生变形机制的晶体塑性本构关系，推导以剪切应变率作为自变量的本构方程牛顿−拉普森迭代式。采用基于体

素方法建立的多晶三维微结构有限元模型，对挤压镁合金材料沿挤压方向加载的单轴拉伸和压缩变形行为进行模

拟。模拟结果表明，单轴加载下模拟与试验的材料宏观硬化行为基本吻合，及压缩变形的模拟织构演化与试验织

构演化也基本趋同。对多晶体内基本物理量的统计分析表明，该模型能够展现多晶内的应力应变、孪晶体分数在

空间的不均匀分布特性，而孪晶体分数分布与晶粒尺寸、晶界位向角及晶界倾角等微结构之间缺乏确切的关联性，

表明非均匀微结构所导致的独特应力非均匀状态并不是出现孪生变形与微结构强关联性的原因。 
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    航空及运输工业对轻质合金的需求促使人们对比

强度高的镁及其合金的变形机制开展了大量的研究工

作。由于室温下仅有有限的独立易滑滑移系，镁合金

的成形性通常比其他金属材料的低。为了提高金属成

形性需要更多地了解多尺度下材料的变形机理。镁合

金的晶体结构为密排六方(HCP)，在镁单晶晶格中，

原子排列最紧密的是{0001}基面；而在基面上原子最

密排方向为 1120 或 a ，镁合金最常见的滑移系有

基面 a 滑移、柱面 a 滑移和锥面 a 滑移，然而基

面 a 滑移系和柱面 a 滑移系都只能提供 2个独立滑

移系，而锥面 a 滑移系可以提供 4 个独立滑移系。

由于 a 位错的基面、柱面和锥面滑移的滑移方向均

为垂直于 c轴的 1120 方向，因此无法协调沿 c轴方

向的应变。尽管 a c + 位错滑移沿 1123 方向可以协

调沿 c轴方向的应变，但在温室环境下 a c + 锥面滑

移系的启动需要相对比较高的临界分解剪切力

(CRSS)，一般情况下难以激发启动[1]，且 a c + 位错

形成的主要区域往是在诸如近表面、晶粒之间的界面、

残余孪晶界，以及晶粒内部晶体结构突变和位错纠结

积塞等应力集中之处[2]。故常温下，HCP 晶体缺少足

够独立活动的滑移系数量，而孪生变形可提供额外的

独立变形模式来满足 Von Mises 准则，因而，孪生变

形在镁合金塑性变形中扮演着重要角色，成为发挥促

进塑性能力作用的一种变形机制[3−5]。 
    镁合金材料在单轴加载条件下的塑性变形行为具

有明显的各向异性性质，不同加载路径下所表现出的

应力应变曲线、屈服强度以及硬化率演化等塑性行为

特征都存在显著差异[6−8]。与滑移变形相比，孪生变形

具有单极性质，且改变晶体取向是一个突发过程，这

种特性对镁合金材料的塑性变形行为有着显著影响。

因此，从细观的角度研究复杂条件下的镁合金塑性行

为及破坏机理是非常有必要的。 
    早期，研究者们对 Cd、Zn 晶体开展的试验中发

现，孪生应力有一个比较宽的范围，并且样品在轻微

弯曲后出现微小孪晶尖端，或存在凹痕的晶体发生孪

生变形所需要的应力低于没有弯曲或小凹痕的晶体。 
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这表明孪生形核所需的应力高于孪晶长大所需的应

力。研究[9]发现，某种孪晶变体占主导地位取决于由

晶体取向确定的 Schmid 因子(SF)。GODET 等[10]针对

拉伸孪晶采用SF预测镁合金管的织构变化。BARNETT
等[11]的研究表明，在 AZ31 中孪生系 SF 对孪生形核比

孪晶变厚的影响更明显。这些说明孪生系 SF 对孪生

变形具有重要的影响作用。然而，BEYERLEIN 等[12−13]

中在变形镁合金晶体中可观测到低 SF 孪晶出现和高

SF 孪晶缺失的情况，从另一方面说明了孪生形核及长

大不仅仅受到 SF 的控制。JONAS 等[14]指出，孪晶变

体的选择可以受到相邻晶粒的应变协调影响，当孪晶

在晶界处形成时，相邻晶粒必须发生变形以协调形状

变化，即挤出效应。然后相邻晶粒的变形在孪晶和晶

体之间产生了驱动应力，同时孪晶变体的选择受到必

需变形类型(如柱面滑移或锥面滑移等)和数量大小的

影响。在 HCP 晶体中，晶粒尺寸效应在 Zn[15]、Zr[16]、

Ti[17]、Mg 及变形镁合金[18]中得到了研究。研究结果

表明，孪生变形的晶粒尺寸效应比滑移变形的更加强

烈，孪生变形与晶粒尺寸存在递增变化关系，大晶粒

更容易发生孪生变形。在大量的 EBSD 研究中，观察

到大多数孪晶形核发生在晶界处[12]。KNEZEVIC 等[19]

的研究揭示了孪生变形机制以及孪晶形核多数发生在

晶界区域，观察到孪晶形核始于对称倾斜晶界，形核

路径依赖于倾斜角度及晶界的位错状态，特别是孪晶

形核更倾向于小角度晶界。综合以上研究表明，孪生

变形与微结构有很强的关联性，这种关联可能由两方

面的原因造成的：一是微结构形态决定位错组态分布，

而位错组态则决定孪生位错的运动结果，即反映孪生

形核的难易程度；二是由微结构在空间分布的不均匀

性形成独特的应力分布状态而促成孪生变形与微结构

的联系。第一种原因是由孪生变形本身性质决定的，

使孪生形核的启动强度与微结构性质联系起来；第二

种原因是孪生变形外部应力因素促成的，使孪生变形

的孪生系分解剪切应力与微结构的不均匀分布联系起

来。然而，目前仍没有足够的证据说明哪一种原因在

孪生变形与微结构关系中起关键作用，许多关于孪生

变形的基本问题仍然没有得到解决。采用各种数值方

法有助于解释试验现象，在细观尺度上，晶体塑性模

型在理解孪生变形的基本性质方面起了很重要的作

用。在晶体模型中，孪生变形通常被假定为按滑移模

式来处理，即伪滑移模式。这种伪滑移模式已应用于

各种数值分析中来分析孪生形核[12, 20]、孪晶与母晶的

相互作用[21−23]、孪生变形的晶格应变演化[24−26]、织构

演化[27−29]、各种不同的硬化过程[30]，以及孪生与去孪

生变形[31−33]等。然而，采用伪滑移方法模拟孪生变形

未能描述孪生变形的动态特性，特别是在孪生变形的

开端和形核阶段[18, 34]。这种模式在描述孪生变形与微

结构的相关性方面仍缺乏系统分析，但许多学者开始

关注这方面的研究[35−36]。本文作者尝试采用伪滑移方

法，结合 3D 建模技术和晶体塑性有限元模型研究镁

合金细观变形机制对宏观塑性行为的影响以及孪生变

形与微结构之间的关系。探索伪滑移模式能够在多大

程度上可以描述孪生变形与微结构的相关性，从而评

价伪滑移方法对孪生变形的描述能力，并辨明导致孪

生变形与微结构之间强关联性的原因。 
 

1  试样制备及力学实验 
 
    试样采用直径为 d 20 mm 的镁合金 AZ31B 挤压

棒，试样材料的初始平均晶粒尺寸约为 20 μm。在

500 ℃下进行 1 h 的时效退火热处理，并氩气保护中空

冷以减少试样氧化。随着晶粒再结晶并长大，最终获

得平均尺寸约为 40 μm 等轴晶粒，其中最小晶粒尺寸

约为 10 μm，最大超过 80 μm，如图 1 所示。 
 

 
图 1  AZ31B 试样材料显微组织 

Fig. 1  Optical micrograph of AZ31B samples 

 
    应用电火花加工(EDM)设备将材料加工成拉伸和

压缩试样，拉伸试样总长度为 120 mm，其横截面为   
4 mm×4 mm，如图 2(a)所示。压缩试样的截面直径为

d 6 mm，长度为 12 mm，如图 2(b)所示。沿挤压方向

(ED)压缩加载能够直接导致拉伸孪生的启动。为了消

除电火花加工表面的损伤，在溶液中进行化学腐   
蚀。在室温下，应用 MTS908 测试系统以常应变率为

1.0×10−4 s−1开展单轴拉伸和压缩测试。 
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图 2  拉伸试样和压缩试样的尺寸示意图 

Fig. 2  Schematic diagram of tensile specimen(a) and compression specimen(b) sizes (Unit: mm) 

 
 

2  晶体塑性本构模型 
 
    在有限变形运动中将变形分解为弹性部分和塑性

部分，则物质点的总变形梯度按乘法分解可表示为 

e p e  det( )= ⋅ ，F F F F ＞0                      (1) 

式中：F表示总的变形梯度张量； eF 表示弹性变形梯

度张量，其可描述晶格伸长与刚体转动等部分的弹性

变形； pF 表示不可压缩的塑性变形梯度张量。 
    同样，速度梯度 L由弹性速度梯度 Le和塑性速度

梯度 Lp所组成，即 
 

e p= +L L L                                  (2) 
 
其中， 

1

1 1

e e e

p e p p e

−

− −

 = ⋅

 = ⋅ ⋅ ⋅





L F F

L F F F F
 

式中：上标“ ⋅ ”表示对时间的导数，上标“−1”表

示矩阵求逆。 
    考虑到镁合金塑性变形主要是由滑移系上的位错

滑移和孪生变形所主导。根据塑性速度梯度 Lp 的定

义，塑性流动律的表达式为[37] 

ST T
( ) ( ) ( ) ( )P

T TS S
1 1 1

1
NN N

f α α β ββ

β α β
γ γ

= = =

 
= − + +  
 
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γ
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 
  
 
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式中： ( )
S
αγ 表示晶粒母体滑移系滑移剪切率； ( )

ST
αγ 表

示孪晶体滑移系滑移剪切率； ( )
T

βγ 表示孪生剪切应变

率； f β 表示孪生系 β 的孪晶体积分数； SN 表示晶粒

母体滑移系的启动数量； TN 表示孪生系的启动数量；

STN 表示孪晶区启动滑移系数量； ( )
S
αS 表示晶体母体

滑移系张量； ( )
T

βS 表示孪晶区孪生系张量； ( )
ST
αS 表示

孪晶区滑移系张量。 

    于是塑性变形率张量 pD 及塑性旋转张量 pW 分

别表示为 
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    (4) 
且 
 

P P P+=L D W                                (5)  

式中：
1 ( )
2

∗ ∗ ∗ ∗⊗ + ⊗P = m n n m ，
1 (
2

∗ ∗′ ⊗ −P = m n   

)∗ ∗⊗n m ， ∗m 为变形后滑移面或孪生面法向向量， ∗n
为变形后滑移或孪生方向向量。 
 
2.1  滑移与孪生变形模式 
    镁合金晶体塑性变形模式主要有滑移变形和孪生

变形，通过一个与分解剪切应力有关的指数函数来描

述滑移变形率和孪生变形率，根据 HUTCHINSON[38]

建议的粘塑性关系，滑移系与孪生系分解剪切应变率

可分别表示为  
( )

( ) ( ) S
0S S ( )

S

( )
( ) ( ) ( )T

0T T T( )
T

sgn( )

sgn( )     for 0  

k

k

g

g

α
α α

α

β
β β β

β

τ
γ γ τ

τγ γ τ τ


 =




=


 

  ≥

       (6) 

 
式中： 0γ 称为参考剪应变率，是待定材料常数；k 为

反映材料的率敏感性质的材料常数； ( )
S
αγ 、 ( )

T
βγ 分别

表示单晶体第α 滑移系、第 β 孪生系的分解剪应变

率； ( )
S
ατ 、 ( )

T
βτ 分别表示第α 滑移系、第 β 孪生系的

分解剪切应力，且由于孪生变形的单极性质，只有当
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分解剪切应力与孪生方向一致时才能启动； ( )
Sg
α 、

( )
Tg
β 分别表示第α 滑移系、第 β 孪生系的应变硬化函

数。 
    晶体发生孪生变形后产生的孪晶体分数的演化与

剪切应变率的关系通过孪生系的理论剪切应变联系起

来。因此，在每个晶粒中 β 孪生系中孪晶体积分数
( )f β 的演化可定义为 

( )( )
twinT /f ββ γ γ=                              (7) 

式中： ( )f β 表示孪生系 β 的孪晶体积分数变化率；
( )
T

βγ 表示孪生系 β 剪切应变率； twinγ 表示孪生系的理

论剪切应变。 
 
2.2  滑移系与孪生系的强度演化 

    根据滑移系与孪生系变形特点，其硬化率 ( )g α 演

化规律采取以下形式[39]， 

( ) ( )

=1
=
n

g hα β
αβ

β
γ                              (8) 

    hαβ 表示滑移或孪生硬化模量，并建议为 

( )= ( )[ +(1 ) ]h h q qαβ αβγ γ δ−                      (9) 

式中：q为常数，通常取 q=0.5； αβδ 为克罗内克函数。

参考文献[40]，滑移系与孪生系的硬化参数 ( )h γ 分别

采取以下形式： 
 

( )
( )

( )

2 0 S
S S 0

0

2 0 T
T T 0

0

= sech

= cosh 1

rf
s

s

h
h h

e

h
h h

γγ
τ τ

γγ
τ τ

  
   −  


  
−    −   

              (10) 

 
式中：各变量下标“S”、“T”分别表示对应滑移系

和孪生系的变量； Sγ 、 Tγ 分别表示滑移系与孪生系的

累积剪切应变；h0 为滑移系和孪生系初始硬化模量；

0τ 为滑移系和孪生系初始屈服剪切应力； sτ 为滑移系

和孪生系饱和剪切应力，计算时 0τ 将作为 g的初始值；

f表示总的孪晶体积分数；r表示孪晶对滑移硬化的耦

合参数，通过试验数据拟合确定。 
 

3  晶体本构模型的数值实现 
 
    晶体塑性的数值计算是十分复杂且面临很多困

难，研究者们提出一种在切线法架构下的显性数值算

法，采用 Jaumann 应力率和变形率来描述本构模型。

STEINMANN 等[41]提出完全隐性算法，把滑移剪切率

看作晶体变形数值模拟的基本变量。ZHANG 等[42]将

应变分量作为基本变量发展了 Newton–Raphson 迭代

算法。这里，文中结合孪生变形机制，将滑移应变率

和孪生应变率作为 Newton–Raphson 迭代算法的基本

变量推导本构模型及求解算法。 
 
3.1  晶体塑性本构方程的时间积分算法 
    根据剪切应变率是剪切应力和硬化强度的函数，

那么应变率的泰勒一阶近似表达式可以写为 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
t t t g

g

α α
α α β β

β β
γ γγ γ τ
τ

+Δ ∂ ∂= + Δ + Δ
∂ ∂
 

        (11) 

式中： ( )t αγ 、 ( )t t αγ+Δ  分别表示第α 变形系在时刻 t、

t t+ Δ 的剪切应变率；
( )

( )

α

β
γ
τ

∂
∂


、
( )

( )g

α

β
γ∂

∂


分别表示剪切应

变率对分解剪切应力、变形阻力的偏微分； ( )βτΔ 、
( )g βΔ 分别表示 tΔ 时间间隔内的应力增量和变形阻力

增量。 
    式(11)中各项由以下方法给出，对式(6)求偏微分

可得 
1( )( )

( ) S
0 S( ) ( ) ( )

S S

1sgn( )
k

k
g g

αα
α

β α α
τγ γ τ

τ

−
∂ = ⋅
∂


            (12) 

1( ) ( )( )
( ) S S

0 S( ) ( ) ( ) ( )
S S S

1sgn( )
k

k
g g g g

α αα
α

β α α α
τ τγ γ τ

−
∂ = − ⋅ ⋅
∂


      (13) 

    根据文献[43]，分解剪切力增量 ( )βτΔ 可表示为 
 

( ) ( ) e:α ατΔ = Δλ ε                            (14) 
 
式中： ( ) ( ) ( ) ( ):α α α α= + −P C W Wλ σ σ ，其中，P 为

Schmid 张量，C为弹性模量张量，W为旋转张量，σ
为 Cauchy 应力张量。弹性应变张量 e pΔ = Δ − Δε ε ε ，

且考虑到晶粒中的孪晶片层结构交错复杂，孪晶中的

滑移变形很难启动，故忽略小量的孪晶区滑移变形，

故 

ST T
( ) ( ) ( ) ( )P P

T TS S
1 1 1

1
NN N

t f α α β ββ

β α β
γ γ

= = =

 
Δ Δ = − Δ + Δ  

 
  = D P Pε

    (15) 
    根据变形系阻力的定义，变形阻力增量可表示为  

( ) ( )

1

n
g hα β

αβ
β

γ
=

Δ = Δ                          (16) 

 
    将以上各式(12)~(16)代入式(11)，整理得 
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( )

( ) ( )
( )

t t t
α

α α
β

γγ γ
τ

+Δ ∂= + ⋅
∂


   

    
ST

( ) ( )( ) ( )
S S

1 1
: : 1

NN
f α αα α β

β α
γ

= =

   Δ − − +     
  Pλ ε λ  

    
T ( )

( ) ( ) ( )
T T ( )

1 1

N n
h

g

α
β β β

αββ
β β

γγ γ
= =

  ∂+    ∂  
 


 P         (17) 

    将对应变形系的剪切应变增量按线性叠加计算，

即 
 

( )1 t t t tγ η γ η γ+Δ Δ = − + Δ                      (18) 

 
这里，η 为控制参数(一般取 0＜η ＜1)，并代入式(17)
整理得 
 

( )
( ) ( )

( )
t t t

α
α α

β
γγ γ
τ

+Δ ∂= + ⋅
∂


   

 ( )
ST

( ) ( )( ) ( )
S S

1 1
: 1 : 1

NN
tf α αα β α

β α
η γ

= =

   Δ − − − Δ −     
  Pλ ε λ  

 ( )
T

( ) ( )( )
T T

1
: 1

N
tβ βα

α
η γ

=
− Δ − Pλ  

 

 
ST

( ) ( )( )
S S

1 1
1 :

NN
t tf α αβ α

β α
η γ+Δ

= =

 
− Δ +   
  Pλ  

 
T

( ) ( )( )
T T

1
:

N
t tβ βα

α
η γ+Δ

=


Δ +


 Pλ  

 

 ( )
( )

( ) ( )
( )

1 1
1

                      

n n
t t th h

g

α
β β

αβ αββ
β β

γ η γ η γ+Δ

= =

 ∂ − Δ + Δ  ∂  
 


 

         

(19) 
    对上式进行进一步整理，可得 
 

ST( )
( ) ( )( ) ( )

S S( )
1 1

1 :
NN

t t t tf
α

α αα β α
β

β α

γγ η γ
τ

+Δ +Δ

= =

 ∂+ − Δ +  ∂  
 


 Pλ

 
T ( )

( ) ( )( ) ( )
T T ( )

1 1
:

N n
t t t th

g

α
β βα β

αββ
α β

γη γ η γ+Δ +Δ

= =

  ∂Δ − Δ −   ∂  
 


 Pλ

 
T( )

( ) ( ) ( )
( )

1
: 1 :

N
t f

α
α α β α

β
β

γγ
τ =

  ∂− Δ − −   ∂   



 λ ε λ  

 

( ) ( )
S T

( ) ( ) ( ) ( )( )
T TS S

1 1
1 : 1

N N
t tα α β βα

α α
η γ η γ

= =


− Δ − − Δ −


  P Pλ  

 

( )
( )

( )
( )

1
1 =0

n
th

g

α
β

αββ
β

γ η γ
=

 ∂ − Δ  ∂  



                 (20) 

3.2  基于应变变量的牛顿−拉普森迭代法 
    在数值模拟中，将式(20)改写为(21)的形式，主要

是考虑到算法植入 ABAQUS/Standard 有限元软件的

方便性，于是有 

( ) =0t t t t t tF H rγ γ γ+Δ +Δ +Δ= + −  ( )               (21) 

式中： t tγ+Δ 表示各变形系的剪切应变率。 

ST( )
( ) ( )( )

S S( )
1 1

( )= 1 :
NN

t t t tH f
α

α αβ α
β

β α

γγ η γ
τ

+Δ +Δ

= =

 ∂ − Δ +  ∂  
 


 Pλ

 
T ( )

( ) ( )( ) ( )
T T ( )

1 1
:

N n
t t t th

g

α
β βα β

αββ
α β

γη γ η γ+Δ +Δ

= =

  ∂Δ − Δ   ∂  
 


 Pλ  

 
T( )

( ) ( ) ( )
( )

1
= + : 1 :

N
tr f

α
α α β α

β
β

γγ
τ =

  ∂ Δ − −   ∂   



 λ ε λ  

( ) ( )
S T

( ) ( ) ( ) ( )( )
T TS S

1 1
1 : 1 +

N N
t tα α β βα

α α
η γ η γ

= =


− Δ − − Δ 


  P Pλ  

( )
( )

( )
( )

1
1

n
th

g

α
β

αββ
β

γ η γ
=

 ∂ − Δ  ∂  



  

 
    以剪切应变率为变量的牛顿−拉普森迭代法可表

示为 

( )
( ) ( )

( )
( )( ) 0
t t

t t t t
t t

FF
α

α α
α

γγ δ γ
γ

+Δ
+Δ +Δ

+Δ
∂+ =

∂


 


         (22) 

式中， 
1( )( )

( ) S
0 S( ) ( ) ( )

S S

( ) 11 sgn( )
kt t

t t
F Q k

g g

αα
α

α α α
τγ γ τ

γ

−+Δ

+Δ

 ∂  = +
 ∂
 





+  

1( ) ( )
( ) S S

0 S ( ) ( ) ( )
S S S

1sgn( )
k

h k
g g g

α α
α

αβ α α α
τ τ

η γ τ
− 

 
 
 

 ， 

式中：

T
( )( )

S
1

( )( )
T

1 : ,   slip system

: ,                       twin system

N
f

Q
αβ α

β

ββ

η

η
=

  
−    =   




 P

P

λ

λ

。 

 
3.3  一致切线刚度矩阵 
    由于有限元计算采用 Newton–Raphson 迭代方法

需确定当前刚度矩阵，因此，对一致切线刚度矩阵的

估计严重影响到计算收敛速度和计算效率。因此，在

本构方程的迭代计算过程中需要不断地更新一致切线

刚度矩阵。 
    分解剪切应力可以由以下公式表示 
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( ) ( ):α ατ = Pσ                               (23) 

 
    对式(23)两边求其物质导数，可推导得[43] 
 

( ) ( ) e:α ατ = Dλ                              (24) 
 
式中： ( ) ( ) ( ):α α α= +P Cλ ξ 及 ( ) ( ) ( )α α α= −W Wξ σ σ ，

eD 表示弹性变形速度张量。 
    对于临界滑移系或孪生系，处于临界状态时，有 

( ) ( ) e
cr

( ) p

( )

1

:

      : ( )

      
n
h

α α

α

β
αβ

β

τ

γ
=

=

= −

= 





D

D D

λ

λ                         (25) 

式中：D为总的变形率张量。于是， 

( ) ( ) ( ) ( ) ( )

1 1

( ) ( ) ( )

1

( )

1

: :

            ( : )

            

n n

n

n

h

h

g

α β α β β
αβ

β β

α β β
αβ

β

β
αβ

β

γ γ

γ

γ

= =

=

=

= +

= +

=

 





 





D P

P

λ λ

λ         (26) 

解得 

( ) 1 ( )

1
:

n
gα β

αβ
β

γ −

=
=  Dλ                         (27) 

式中： 1

1

n
gαβ

β

−

=
 表示 g的逆矩阵的第α 行向量。 

    以现时构型为基准，应力增量可表示为 

e ( ) ( )

1
 : =  : :

n
α α

α
γ

=
Δ = −  C D C D C Pσ              (28) 

式中：Δσ 为 Cauchy 应力增量张量，C为弹性模量张

量。将式(27)代入式(28)，可得 

( ) -1 ( )

1 1

-1 ( ) ( )

1 1

 : : :

      : :

n n

n n

g

g

α β
αβ

α β

α β
αβ

α β

= =

= =

Δ = −

 
= − ⊗  

 

 



C D C P D

C I P D

σ λ

λ
         (29) 

令 

-1 ( ) ( )

1 1
= :

n n
g α β

αβ
α β= =

 
− ⊗  

 
E C I P λ  

即为一致切线刚度矩阵。 
 
3.4  弹性变形梯度的计算 
    由式(2)定义了弹性速度梯度张量，考虑在 tΔ 时间

增量内，可得 

e e e( )tΔ = ⋅ ΔF L F                            (30) 

    由弹性速度梯度、弹性变形率张量和弹性旋转张

量的关系，可以得到 

e e e( )t t⋅ Δ = + ⋅ ΔL D W                        (31) 

    将 e e tΔ = ⋅ ΔDε 及 e e tΔ = ⋅ ΔW W 代入式(31)，可

得 
 

e e et⋅ Δ = Δ + ΔL Wε                          (32) 
 
    又因为 e pΔ = Δ − Δε ε ε 及 e pΔ = Δ − ΔW W W ，则 

e p p( )t⋅ Δ = Δ + Δ − Δ + ΔL W Wε ε               (33) 

    根据文献[44]，有 12( )( )−Δ = Δ − Δ −W R I R I ，所

以 

e 1 p e[ +2( )( ) ]t−Δ = Δ Δ − Δ − − ⋅ ΔF R I R I L Fε       (34) 

式中： ΔR为 tΔ 时间内刚体旋转矩阵。因此，从 t 到
t t+ Δ 时刻弹性变形梯度可由 t 时刻的累积弹性变形

梯度表示如下： 
 

et tΔ + Δ =F  

     1 p e[ +2( )( ) ]t t t t t t ttΔ + − Δ +Δ Δ − Δ − − ⋅ Δ ⋅R I R I L Fε  

(35) 
    通过 et tΔ + ΔF 就可以将 t 时刻当前构型的张量转

换为 t t+ Δ 时刻当前构型的张量。 
 

4  多晶镁合金的有限元模拟 
 
4.1  3D 微结构模型的构建 
    采用重构镁合金等效微结构体作为晶体塑性模拟

的有限元模型。这里 3D 多晶微结构数据是由相应的

2D 扫描成像图中采集而来。采用 EBSD 技术，从一系

列试验中统计晶体形态结构数据，其中统计生成微结

构特征的参数包括晶体形态参数的分布函数，如晶粒

体积、相邻晶粒数，以及晶体(结晶)结构参数，如晶

体取向、晶界角度和微织构。采用分布函数对微结构

参数进行描述，以便生成统计等价的 3D 重构晶体结

构模型。以真实晶体形态结构的统计数据为基础，系

列生成 3D 微结构模型的过程包括：1) 生成晶核，通

过控制相邻晶核最大距离和最小距离，匹配晶粒尺寸

统计分布；2) 采用 Voronoi 方法，生成等轴晶的晶粒，

并计算统计晶粒等效直径、每个晶粒的晶界面的顶点
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(晶界面为多变形)、晶界面法向，相邻晶粒数以及相

邻晶粒序号等信息；3) 根据统计结果，赋予每一个晶

粒给定的晶体取向。获得等效织构和晶界角、Schmid
因子等数据。 
    重构 3D 微结构模型是对真实晶体形态结构的统

计数据进行匹配，微结构重构包含的结构特征与真实

微结构在统计上相一致。文中所建的镁合金等效微结

构体模型，如图 3 所示。 
 

 
图 3  Voronoi 微结构模型 

Fig. 3  Voronoi microstructural models 

 
    整个微结构模型是边长为 0.25 mm 的正方体，包

含 373 个晶粒。其晶粒直径、孪晶 Schmid 因子、晶

界倾角的分布对比测量数据在统计上保持相一致，如

图 4~6 所示，分别表示晶粒直径、孪晶 Schmid 因子、

晶界倾角的统计分布。 
 
4.2  加载与模型边界条件 
    如图 3 所示，分别将挤出棒的 RD 方向、TD 方向

及 ED 方向定义为坐标系的 x轴、y轴及 z轴。计算模

型施加的边界条件为：1) 约束 x =0、y =0 及 z =0 三

个平面的法向位移为 0；2) 保持平面 x =1 与 y =1 为 
 

 
图 4  等效晶粒直径(尺寸)的分布 

Fig. 4  Distribution of equivalent grain diameters (size) 

 

 
图 5  晶粒孪生系 Schmid 因子的分布 

Fig. 5  Distribution of Schmid factor of twinning system 
 

 
图 6  晶界倾角的分布 
Fig. 6  Distribution of grain boundary misorientation angles 
 
自由平面状态，平面 z=1 施加 z方向的均匀拉伸或压

缩应变，最大加载变形应变量为 20%。 
 
4.3  本构模型参数 
    将上述的本构模型作为材料子程序(UMAT)植入

ABAQUS/Standard 有限元分析软件中，采用逐渐逼近

法，将应力应变数值计算结果与试验数据不断比较逼

近，筛选出一组与应力应变试验曲线相匹配的材料参

数，如表 1 所示。 
 
表 1  AZ31 单晶硬化参数 

Table 1  Single crystal hardening parameters of AZ31 

Deformation  
mode 

τ0/ 
MPa 

τs/ 
MPa 

h0/ 
MPa 

γ0/ 
s−1 q r k 

Basal- a   20 50 250 0.001 1.4 0.7 100 
Pri- a   75 115 250 0.001 1.4 0.7 100 

Pyr- a c +   95 160 250 0.001 1.4 0.7 100 

Ten-Twin 50 75 100 0.001 1.4 − 100 

Com-Twin 120 155 450 0.001 1.4 − 100 
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    值得指出的是，利用这组硬化参数进行数值模拟，

我们可以得到类似于图 7 所示的应力−应变曲线，表

明由这组参数模拟得到的单调拉伸和压缩的应力应变

曲线与试验结果比较吻合。 
 

5  实验结果 
 
5.1  镁合金拉伸和压缩加载下的宏观硬化行为 
    图 7 所示为挤压镁合金沿挤压方向拉伸和压缩加

载下的宏观应力应变试验和模拟曲线。比较图中的试

验与模拟曲线可知，两者的宏观硬化行为基本吻合。

对拉伸与压缩曲线进行比较分析，可以看出拉伸和压

缩宏观硬化行为具有显著的差异，表明镁合金材料力

学行为具有明显各向异性特征。从细观的角度来看，

拉伸变形的硬化行为主要是由滑移变形来主导，所以

表现出上凸的硬化曲线。而压缩变形的硬化行为有孪

生变形的参与，具体来说，在压缩开始屈服阶段，塑

性变形主要是孪生变形主导，孪生变形开始呈现低硬

化率，甚至是软化现象，曲线表现为一段接近水平的

线段；随着材料变形的不断增加，孪生应变硬化也随

之增加，孪生变形逐渐减少直至耗尽。随应力水平的

提高，滑移变形启动并主导后续的变形，因此，整个

压缩变形硬化行为表现出不寻常的“S”形曲线。可

见，拉伸与压缩宏观硬化行为的差异主要是由变形机

制活动情况不同造成的。因此，深入研究细观变形机

制是深化理解镁合金各向异性性质的基础。 
 

 

图 7  挤压 AZ31 单轴拉伸与压缩下的应力−应变试验与模

拟结果比较 

Fig. 7  Comparison of simulation and experimental results for 

loading direction stress–strain response of polycrystalline 

AZ31 in uniaxial tension and compression 

 
5.2  模拟织构及演化分析 
    镁合金挤压棒具有典型的挤压织构，即 c轴方向

多数近似垂直于 ED 方向(挤压方向)，如图 8(a)所示。

图 8 中 ED、RD、TD 分别代表挤压(轴线)方向、半径

方向和切向方向。如图 8 所示，多晶体模拟初始织构 
 

 
图 8  挤压态镁合金 AZ31 的取向极图[45] 

Fig. 8  Pole figures of as-extruded AZ31 magnesium alloy[45]: (a) Simulated; (b) Measured 
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与文献[45]测量的晶体织构基本吻合。 
    图 9 所示为微结构数值模型中初始状态下各晶粒

的 c轴晶向示意图。彩色圆点表示晶粒的晶核及其空

间位置，箭头指向为晶粒的 c轴方向。从图 9 可以看

出，微结构模型中的晶粒晶格 c轴方向大部分垂直或

接近垂直 ED 方向(z轴)，这样的分布符合实际挤压棒

材的晶粒取向分布统计。图 9 形象地呈现晶粒的晶核

及取向在空间的位向分布。 
    图 10 所示为镁合金微结构模型在压缩加载下应

变分别达到 5.5%和 10%时各晶粒的取向分布图像。图

中分别表示(0001)方向的取向图，以及 (1010) 方向的

取向图。从图 10(a)可以看出，(0001)方向已由初始状

态时分布于图像边缘变为集中向图像中心位置偏转，

而 (1010) 方向则由比较靠近图像中心向图像边缘扩

散。这样的取向变化主要是因为孪生变形引起取向的 

 

 
图 9  微结构模型中晶粒的晶核位置及晶粒 c 轴方向(其中

圆球表示晶核，箭头表示 c轴方向) 
Fig. 9  Crystal nucleus position and c-axis of grains in 
microstructure model (Each sphere represents crystal nucleus, 
arrows represent c-axis) 

 

 
图 10  在 ED 方向上不同压缩应变的模拟和测量极图[45] 
Fig. 10  Simulated and measured pole figures[45] during compressive deformation in ED at different strains: (a), (b) 5.5%; (c), (d) 
10% 
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大角度转动造成的。文中微结构织构模拟结果与文献

[45]的试验测量结果基本吻合。图 10(b)所示应变量为

10%时的晶向图像，与图 10(a)比较，其图像的变化并

不大。这是因为材料压缩变形达到 5.5%时，大部分晶

粒的孪生变形基本完成，接下来进一步的变形主要是

由滑移变形主导的变形过程。滑移变形引起的晶向转

动主要是弹性变形梯度导致的刚性转动，其累积转动

角度比较小，反映在织构图像的变化不够明显，这与

宏观硬化行为的分析结果相一致。 
 
5.3  应力、应变及孪晶的空间分布非均匀性 
    图 11 所示为压缩变形量为 5.5%时加载方向上的

应力 S33、应变 L33 及孪晶体分数的空间分布云图。

从图 11 可以看出，应力 S33、应变 L33 及孪晶体分数 
 

 
图 11  加载方向上的应力、应变空间分布云图和孪晶体分

数空间分布云图 
Fig. 11  Spatial distribution contours of loading direction 
stress(a), loading direction strain(b) and volume fraction of 
twinning(c) 

在空间的分布极不均匀。在图 11(a)中，压缩应力的变

化范围从−380~17 MPa，平均应力约为−190 MPa。应

力变化从正应力到负应力在空间连续分布，说明微结

构内部存在明显的空间应力梯度，这是导致局部损伤

或裂纹萌生的基本驱动力。与应力空间分布相似，在

图 11(b)中应变在空间的分布也是极不均匀，应变变化

幅度范围从−0.2%~−15.6%。与应力梯度分布对应，多

晶内部存在明显的应变梯度。图 11(c)表示孪晶体分数

的空间分布，不均匀特征也是明显的，说明孪生变形

在各晶粒的变形程度存在较大的差异。从图 11(c)可以

看到，有些晶粒的孪生体积分数已经达到接近 100%，

而其中一部分晶粒孪晶体积分数还不到 10%。这表明

微结构体内各晶粒产生的孪生变形很不均匀，造成孪

晶在空间的分布不均匀，从而表现出多晶体内晶粒结

构形态的复杂特性，对多晶材料力学性能、损伤或裂

纹产生的预测因此会变得更加困难。 
    以上不均匀现象通常与晶体内产生的变形机制不

同有很大关系。晶粒的大小、晶向、晶界倾角等微结

构都可能影响到孪生变形和滑移变形的启动，而孪生

变形和滑移变形启动的不同组合决定了多晶材料的微

结构演化以及宏观硬化行为。 
 
5.4  晶粒尺寸与晶粒应力、应变、孪晶分数的关联性

分析 
    图 12~14 所示分别为微结构模型中晶粒尺寸与压

缩应力、压缩应变和孪晶体积分数的统计关系。图 12
反映了加载方向的压缩应力 S33 随晶粒尺寸的变化而

变化的关系图。从图 12 中可以看出，两者之间没有形

成线性比例关系，而是在一定范围内无规律的变化。

然而，模拟统计数据显示，小尺寸晶粒的应力分布比 
 

 
图 12  应变为 5.5%时加载方向的应力 S33 与晶粒直径关系

图 
Fig. 12  Relationship between calculated stress S33 in loading 
direction for average strain of 5.5% and grain diameter 
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图 13  等效应力 σVM 随晶粒半径的变化[46] 
Fig. 13  Variation of σVM with grain radius at different 
strains[46] 
 
大尺寸晶粒的应力分布显得更集中一些。WANG 等[46]

采用三维 X 射线技术测量了 1000 多个晶粒的等效应

力与晶粒半径的关系分布，如图 13 所示，等效应力在

一定范围内非均匀分布，且与晶粒半径没有确切的函

数关系。 
    图 14 所示为加载方向的压缩应变 L33 随晶粒尺

寸的变化而变化的关系图。从图 14 可以看出，与应力

分布相似，两者之间也没有形成线性比例关系，而是

在一定范围内无规律的变化，在小尺寸晶粒的应变分

布比大尺寸晶粒的应变分布也更集中一些。图 15 所示

为晶粒孪晶体分数与晶粒直径关系。从图 15 中可以看

出，在各晶粒的孪晶体分数与晶粒尺寸并没有形成简

单的线性关系，其孪晶体分数随晶粒尺寸的变化而变

化，且变化幅度比较相似，变化范围在 0.1~0.8 之间；

图中并没有发现在某一尺寸范围内孪晶体分数的变化

特别突出。 
 

 
图 14  加载方向的应变 L33 与晶粒直径关系 

Fig. 14  Relationship between calculated strain in loading 

direction for average strain of 5.5% and grain diameter 

 

 
图 15  晶粒孪晶体分数与晶粒直径关系 

Fig. 15  Relationship between volume fraction of twinning in 

each grain for average strain of 5.5% and grain diameter 

 
    以上对模拟结果的统计分析表明，晶粒尺寸对应

力、应变及孪晶体分数的分布不存在确切的函数关系，

说明采用伪滑移方法描述孪生变形进行数值模拟时，

虽然能够描述应力应变在多晶微结构内部产生的不均

匀特征，但在描述孪生变形与晶粒尺寸的关系上与试

验现象仍存在较大的偏差，关于这方面的问题将在讨

论部分进一步阐述。 
 
5.5  晶界位向角与晶界邻域的平均应力、应变、孪晶

体分数的关联性分析 
    定义晶粒中晶界面的法线方向与加载轴的角度，

称为晶界位向角。图 16~18 所示分别为结构模型中晶

粒的晶界位向角与晶界邻域的应力、应变和孪晶体积

分数的统计关系。图 16 所示为加载方向的压缩应力 
 

 
图 16  晶界邻域加载方向的应力 S33 与晶界位向角的关系 
Fig. 16  Relationship between calculated stress in loading 
direction for average strain of 5.5% and misorientation between 
grain boundary plane normal and loading direction 
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图 17  晶界邻域加载方向的应变 L33 与晶界位向角的关系 
Fig. 17  Relationship between calculated strain in loading 
direction for average strain of 5.5% and misorientation between 
grain boundary plane normal and loading direction 

 

 
图 18  晶界邻域晶粒孪晶体分数与晶界位向角的关系 
Fig. 18  Relationship between volume fraction of twinning in 
each grain for average strain of 5.5% and misorientation 
between grain boundary plane normal and loading direction 
 

S33 与晶界位向角的关系图。从图 16 可以看出，约

90°的晶界位向角对应的应力在 125~260 MPa 之间分

布，而约 20°或 160°晶界位向角对应的应力变化约在

160~225 MPa 之间分布，整个分布范围呈现椭圆形区

域，即以 90°的晶界位向角为中心，应力变化范围随

晶界位向角向两端变化而变小。 
    图 17 所示为加载方向的压缩应变 L33 与晶界位

向角的关系图。从图 17 可以看出，所有晶界位向角对

应的压缩应变变化约为 0.025~0.075，平均压缩应变为

0.055。与压缩应力的分布相似，应变分布对晶界位向

角没有特殊偏好，因此整个分布范围呈现长方形区域。 
    图 18 所示为加载方向的孪晶体分数与晶界位向

角的关系图。从图 18 可以看出，所有晶界位向角对应

的孪晶体分数变化约为 0.2~0.7，平均值约为 0.5。与

应变的分布相类似，孪晶体分数分布对晶界位向角没

有特殊偏好，因此整个分布范围呈现近似的长方形区

域。 
 
5.6  晶界倾角与晶界邻域的平均应力、应变、孪晶体

分数的关联性分析 
    定义两相邻晶粒的晶界倾角为两个相邻晶粒取向

之间的角度，根据式(36)进行计算两相邻晶粒 A、B
之间的晶界倾角。 

1
-1 A Btr( ) 1= min cos

2
g gθ

− − 
 
  

                  (36) 

    图 19~21 所示为微结构模型中晶粒的晶界倾角与

晶界邻域的压缩应力、压缩应变和孪晶体积分数的统

计关系。图 19 所示为加载方向的压缩应力 S33 与晶

界倾角的关系图。从图 19 可以看出，晶界倾角在

0°~90°之间变化，晶界倾角对应的压缩应力在125~260 
MPa 之间分布，整个分布范围呈现长方形。但压缩应

力的分布对晶界倾角的大小没有出现特殊倾向。 
    图20所示为晶界倾角与加载方向的压缩应变L33
的关系图。从图 20 可以看出，所有晶界倾角对应的压

缩应变在 0.03~0.07 之间变化，平均应变为 0.055。与

晶界倾角对应的应变分布没有出现特殊倾向，因此，

整个分布范围呈现长方形。 
    图 21 所示为晶界倾角与晶粒的孪晶体积分数的

关系图。从图 21 可以看出，与图 17 的统计结果相似，

所有晶界倾角对应的孪晶体分数变化在 0.02~0.08 之

间分布，平均值为 0.5。孪晶体积分数分布对晶界倾角 
 

 
图 19  晶界邻域加载方向上应力 S33 与晶界倾角的关系 

Fig. 19  Relationship between calculated stress in loading 

direction for average strain of 5.5% and grain boundary 

misorientation angles 
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图 20  晶界邻域加载方向上应变 L33 与晶界倾角的关系 

Fig. 20  Relationship between calculated strain in loading 

direction for average strain of 5.5% and grain boundary 

misorientation angles 

 

 
图 21  晶界邻域晶粒孪晶体分数与晶界倾角的关系 

Fig. 21  Relationship between volume fraction of twinning in 

each grain for average strain of 5.5% and grain boundary 

misorientation angles 

 
没有特殊倾向，因此整个分布范围呈现近似的长方形

区域。 
    综合以上分析，针对晶粒尺寸、晶向、晶界等微

结构与应力、应变、孪晶体积分数的模拟结果进行了

统计关联分析。分析结果表明该模型能够再现应力、

应变在空间的不均匀分布，在统计上与实验结果基本

吻合，但在统计微结构与孪晶体分数的分布关系上与

试验结果仍存在不相符的情况。 
 

6  分析与讨论 
 
    前面提到的文献及本文所开展的模拟分析结果表

明，从按体积平均的物理量演化来看，伪滑移模式在

一定程度上能够有效描述由孪生变形引起的非均匀应

力应变演化、应变硬化率演化、多晶织构演化、孪生

与去孪生变形特征等。正如文中模拟的结果一样，宏

观硬化行为与织构演化的模拟结果与试验比较吻合，

然而，进一步地统计分析发现，微结构与孪晶分布之

间缺乏确切的关联性，这与文献[12]中呈现的试验现

象并不一致。究其原因，可以从孪生变形过程去分析。

原子尺度上的研究表明[47]，稳定的孪晶形核由多重原

子层构成。分子动力学研究[48]也表明，孪晶形核由孪

晶偏位错合并而成，孪晶偏位错来源于大错配晶粒晶

界，位错均匀排列在小角倾斜晶界处。孪生形核是位

错堆积导致孪晶芽尖形成，在此基础上，孪晶薄片快

速形成，且沿晶粒内部呈贯穿性增殖。随后孪晶进入

逐渐增厚过程。因此，孪晶的形成过程可分为细小孪

晶的形成，然后长大的过程。 
    在某些金属材料中，如镁、钛，孪晶变厚过程持

续进行，直到整个晶粒取向发生改变，即晶向重定     
向[49−50]。从以上模拟结果看，伪滑移模式对孪生变厚

过程的描述是合理有效的。然而，由于孪晶形核的动

力机制特性，在孪生开端和增殖阶段描述孪生形核与

周围环境间相互作用的关系仍然比较困难。伪滑移模

式正是由于缺乏对孪晶形核的动态特性及形核位置邻

域微结构演化的描述能力，结果导致难以对孪晶微结

构特征进行识别和对离散孪晶带形态的非均匀空间分

布进行预测，致使模拟统计结果与试验现象不一致。

这也表明伪滑移模式缺乏描述镁合金多晶体变形细节

的能力，且非均匀微结构所导致的独特应力非均匀状

态并不是孪生变形与微结构强关联性的原因。显然，

孪生变形所导致的晶格取向快速变向以及塑性流动的

不均匀性，与微结构形态和结构特征之间存在错综复

杂的关系，因此深入研究孪生形核机制及其与微结构

之间的关系仍是一项很重要的工作。 
 

7  结论 
 
    1) 文中构建的本构模型基本能够描述单调加载

下镁合金材料的宏观硬化行为，并能够从细观的变形

机制解释镁合金力学性能的各向异性特性。 
    2) 对于拉伸与压缩宏观硬化行为的差异，其原因

是不同加载情形导致滑移与孪生变形的不同组合造成

的。 
    3) 镁合金多晶织构的变化主要是孪生变形引起

晶粒取向的大角度、快速转动造成的，而滑移变形引
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起的晶向变化是连续的、小角度转动的。 

    4) 针对晶粒尺寸、晶向、晶界等微结构与应力、

应变、孪晶体分数的模拟结果进行了统计分析。分析

结果表明，该模型能够展现多晶内的应力、应变在空

间的不均匀分布特性，在统计上与试验结果基本吻合，

因而伪滑移模式对孪生变厚长大过程的描述是合理有

效的。 
    5) 统计分析表明，微结构与孪晶体分数的关联分

布与试验现象存在不相符的情况，说明采用伪滑移模

型描述孪生变形的方法仍存在不足，无法进一步描述

更多的变形细节；这也表明非均匀微结构所导致的独

特应力非均匀状态并不是造成孪生变形与微结构强关

联性的原因。 
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AZ31 Mg alloy and analysis of microstructural relatedness 

 
LAN Yong-ting1, CHEN Yuan3, REN Yi-fang2, ZHANG Ke-shi4, WANG Shuai2 

 
(1. School of Vocational and Technical Education, Guangxi University of Science and Technology,  

Liuzhou 545006, China; 
2. School of Mechanical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; 

3. School of Mechanical Engineering, Guangxi University, Nanning 530004, China; 
4. College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China) 

 
Abstract: In order to discover the relationship between the twinning deformation and microstructure in Mg alloy, 
describing twinning by pseudo-slip mode, the crystal plastic constitutive relation including slipping and twinning was 
established. And the Newton-Raphson iteration method was developed with the shear strain rate directly as the basic 
variables of iteration. The deformation behaviors of extruded Mg alloy loaded by uniaxial tension and compression along 
the extrusion direction were simulated using the finite element model of polycrystal based on voxel algorithm. The 
simulation results show that the macroscopic hardening behaviors predicted using the proposed model are in good 
agreement with the experimental results, and there are the same evolutions of polycrystalline texture during testing and 
simulating for Mg alloy. The statistical analyses of principal physical variables show that the proposed constitutive model 
is available to demonstrate the inhomogeneous characteristic of spatial distribution of stress-strain, the fraction of 
twinning in polycrystal, but there is a short age of the explicit relatedness of the volume fraction of twinning with respect 
to grain size, the misorientation between grain boundary plane normal and loading direction, the grain boundary 
misorientation angles in polycrystal, respectively. It is shown that the inhomogeneous state of unique stress resulted from 
the inhomogeneity of microstructure is not the reason for the strong relatedness between twinning deformation and 
microstructure. 
Key words: magnesium alloy; twinning deformation; microstructure; plastic constitutive model; texture 
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