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[ Abstract] The fundamental mechanical equations were studied under the mechanical space . The differential stress op-

erator and strain operator were obtained. There were strain energy operator and Hamilton operator for elastic body in sa me

way , and the following results were testified. 1) The equilibrium equation of force is equivalent to the harmony equation

of deformation under the mechanical space. They are all the basic mode of eigen equation of stress or strain operator. 2)

The eigen value of stress or strain operator is corresponding to the order of kinetic energy of elastic body , and the elastic

wave represents the nom basic mode . 3) The eigen functions of stress operator or strain operator corresponding to some ki

netic energy order are fields of modal stress or modal strain in same order. 4) The eigen equations of strain energy operator

are the fundamental equations of elastic mechanics which are expressed with the potential functions .
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1 INTRODUCTION

The dividing phenomenon of motion, which is
described in quantum mechanics , is the general law in
material world. It exists not only in micromecha-
nism, but also in continuum. For example, when
studying the mechanical vibration and the elastic wave
of solid, when studying the motion of fluid and the
propagation of voice , we can see the dividing mechan-
ical quantities , such as frequency , amplitude and sim-
ple harmonic motion. As to static mechanics , it is on-
ly the basic mode of the dividing motion. For the
classical elastic mechanics, the elastic body is not
studied in the view of the dividing motion with the
operationalized principle, which is compatible with
quantum mechanics, but by using the geometrical
principle of Newton’s law ,the equilibrium equation of
force and the harmony equation of deformation in the
form of tensor are given, and many branching theo
ries are formed , such as elastic mechanics , elastic dy-
namics, isotropic mechanics and anisotropic mechan-
ics. The inadequacy of the classical elastic mechanics
is that it can not describe the varied anisotropic elastic
body in a unitized and explicit form , and can not give
the regularized equations for the different mechanical
processes .

In order to change the system of classical elastic
mechanics into one of quantum mechanics , it is neces-
sary to alter some traditional ideas. For example, re-
placing the geometrical space with the mechanical
space , the mechanical quantities with the mechanical
operators , and the differential equations with the op-
erator equations . To overcome the theoretical difficul-
ty of classical elastic mechanics, elastic mechanics are
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improved with the operationalized principle[1 “7

2 DEFINITION OF MECHANICAL SPACE

The matrix form of the generalized Hooke’ s law
under geometrical space is
o= C¢ (1)
Eqn.(1) holds the eigen equation of elastici-
8101
(C- A) ¢=0 (2)
where dand ¢are eigen value and eigen vector of
elastic coefficients matrix C, respectively. A is
Kelvin elastic module, and is not related to coordi

ty[

nates. ¢ is mechanical space, and indicates the
anisotropic direction of elastic body. Thus the elastic
coefficients matrix under geometrical space can be de-
composed spectrally under mechanical space

C= oA T (3)
where
is orthogonal and symmetric. 4 is eigen elastic ma-

@is eigen modal matrix of elastic body, and

trix and is diagonal .
So, the generalized Hooke’ s law under mechani-
cal space becomes the normal form

*

o, = ke, i=1,2,..,6 (4)
Eqn.(4) is called the modal Hooke’ s law in
which the modal stress and strain vector are
o' = @'o (5)

*

&= de (6)
3 STRESS AND STRAIN OPERATORS

Under the geometrical space , the equilibrium e-

quation of force and the harmony equation of defor-

mation of elastic body respectively arel ©°7)
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Gk ki ¥ i = 0 (7)

€ij ki - Cxjil+ €k ij- €k = 0 (8)

Using the symmetry of index, Eqns.(7) and
(8) can be written as the form of matrix

[A]O0=0 (9)
[ V]e=0 (10)
where [ A] and [ V] are symmetrical differential

operator matrices of the second order and called stress
operator matrix and strain operator matrix respective-

0, 0 0 0 031 0
022 0 03, 0 (%31
[ A] _ 033 03, 031
(022 +033) 02 031
(011 +033) O3z
(022 +011)
(11)
0 055 0y - 0y 0 0
0 0, 0 - 05
0 0 0 - 01,
1 1 1
vV]= - 0 — 02 013
2 2 2
1 1
- 7622 7623
1
- 7633
(12)

where 0;;=0; = 0%/ 0 x;0 X;
Projecting Eqns .(9) and (10) into the mechani-

cal space , the following equations are proved[6’7]
[a]l= @[a" ] @ (13)
[V]= [ Vv ] (14)

where [ A" Jand [ V' ] are diagonal and called
eigen stress and strain differential operator matrix re-
spectively . Thus, under mechanical space, the equi-
librium equation of force and the harmony equation of

deformation of elastic body become! ¢-7!
A:O: :05 i:l,2,~'~,6 (15)
viEe =0, i=1.2,..,6 (16)

where A} and V] are called stress operator and
strain operator respectively .

Using Eqn.(4) , and comparing Eqn.(15) with
Eqn.(16) , We get

vi=4A44], i=1,2,..,6 (17)

Thus under mechanical space , the equilibrium e-
quation of force is equivalent to the harmony equation
of deformation in the process of physics .

4 HAMILTON OPERATOR OF ELASTIC BODY

Under the field of potential force, Hamilton
quantity of elastic body is sum of the kinetic energy
and potential energy. If replacing the mechanical
quantity with the mechanical operator, the Hamilton
Operag\or is /cibtained

H=AT+ V(r) (18)
where T is the kinetic energy operator, and V(1)
is the potential energy .

Because the operator of velocity vector is differ
entiation of the first order with respect to time, the
kinetic energy operator is differentiation of the second
order with respect to time .

A 1

T = S P Vi (19)
where  pis the intensity of elastic body , and Vv, =
0%/ 0tot.

It is proved[(’] that the geometrical differential
operator of stress or strain is in direct proportion to
that of time for elastic body

4 4;

V= L, i=1,2,..6 (20)

Thus, when neglecting the potential force, the
component of the Hamilton operator under mechanical

space becomes
VAN

Hi=‘%44; i=1,2,..,6 (21)

From Eqn.(21) , it can be seen that Hamilton
operator of elastic body is in direct proportion to the
stress operator or strain operator, which gives the
meaning of kinetic energy to the deformation of elas-
tic body.

5 EIGEN DIFFERENTIAL EQUATION OF OF
ERATOR

According to the acting principle of differential
operator, when Hamilton operator acts on some func
tion, it is equal to eigen value of the differential oper
ator n}\ultiplies by the same function.

H fi(x) = D fi(x), i=1,2,..,6 (22)

Substituting Eqn.(21) into Eqn.(22) , then

A A fi(x) = di fi(x), i=1,2,..,6

(23)

Considering the physical meaning of Eqn.(23),

under the mechanical space , the wave equation of e-

lastic body is given as follows! 7 :

A aiE (x,t) = pvttg; (x,8),
i=1,2, -..,6 (24)
Dividing the variables of strain field into two
parts,
& (x,t) = fi(x)s g(t),i=1,2,..,6
(25)
and substituting Eqn.(25) into Eqn.(24), Eqns.
(26) and (27) are obtained:
A A7 fi(x) = d;i fi(x), i=1,2, .6
(26)
PVugi(t)y = dig(t)y, i=1,2,..,6
(27)
The eigen differential equation of stress operator
is just the static portion of the dynamical equation of
elastic body . The eigen value of stress operator means
the kinetic energy . When elastic body is in the basic
mode , that is, dy =0, the eigen differential equation
is just the equilibrium equation of force or harmony
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equation of deformation of the static mechanics of e-
lastic body .

6 STRAIN ENERGY OPERATOR AND ITS
EIGEN DIFFERENTIAL EQUATION

Although the eigen differential equation of
Hamilton operator has clear physical meaning, it is
necessary to study the operator equation in the view
of strain energy .

According to the calculating formula of strain en-
ergy , replacing stress with stress operator and strain
with strain operator, we can define strain energy op-
erator in same way .

2U= 0o ¢g= 0"« ¢ (28)

A . . PR

2U=[a" 1 v 1= 2 4 9; (29)

Using Eqn .(1) ,

U= Xaar= Xha = Xl 30

According to the acting principle of the differen-
tial operator, the eigen differential equation of strain
energX operator is
i=1,2, -..,6 (31)
Comparing Eqn.(21) and Eqn.(30) , it is seen

Ui ¢ = Ei ¢,

that strain energy operator is in direct proportion to
the square of Hamilton operator. So the physical
meaning of the eigenvalue of strain energy operator,
E;, is the square of the kinetic energy of elastic body
in the corresponding mechanical space .

According to the definition of potential function

under mechanical SpaC€[7],
g = AW, i=1,2, ...,6 (32)
where % is the potential function. Substituting

Eqn.(32) into Eqn.(24) , and using Eqn.(20) , get

& oa?w = ﬁvttttyf/ i=1,2, ..,6

(33)

It is just the wave equation expressed with po
tential function of elastic body .

Dividing the variable of the potential function in-
to two parts,

Fi(x,t) = ¢(x)+ ¥i(t),

i=1,2, -..,6 (34)
and substituting Eqn.(34) into Eqn.(33) , then

Ul (x) = Egi(x), i=1,2, 6

(35)

g Vu¥i(t) = AE vi(h),

i=1,2, -..,6 (36)

From Eqn.(35) , It is seen that the eigen differ
ential equation of strain energy operator is just the
static portion of dynamical equation expressed with
the potential function of elastic body. When elastic
body is in the basic mode, that is, E, =0, it is ob-
tained from Eqn.(35) that

AL V] ogp(x) =0, i=1,2, ...,6 (37

Eqn .(37) is just the double harmony equation of

elastic mechanics , and ¢ is just the stress function.

Thus , there exist six independent stress functions for
the general anisotropic body. The definite equation
and its boundary condition for the varied anisotropic
body was given in Ref .[7].

7 CONCLUSIONS

The elastic mechanics under mechanical space is
studied, and the operationalized principle of elastic
mechanics is presented. Compared with the classical
elastic mechanics under geometrical space , the new e-
lastic mechanics exhibits: 1) the modal stress ( modal
strain) becomes the measure of mechanical condition ;
2) the eigen equation of stress operator (strain opera-
tor) becomes the fundamental equation of elastic me-
chanics ; and 3) the order of kinetic energy composes
the spectral distribution of motion of elastic body .

The advantages of the operationalized principle
of elastic body are 1) no matter how complicated the
anisotropy of elastic body may be , there exist a set of
definite and explicit formulae ; 2) there is no differ
ence between force method and displace ment method ;
3) there is no methodology difference between static
mechanics and dynamics ; 4) the cutting technique of
mode can be used to simplify the calculation of elastic
anisotropic body .
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