

[ Article ID] 1003 - 6326(2000)05 - 0639 - 03

## Rheological properties of feedstocks for powder extrusion molding<sup>①</sup>

ZHOU Jicheng(周继承), HUANG Baiyun(黄伯云), WU Enxi(吴恩熙)  
 (State Key Laboratory for Powder Metallurgy, Powder Metallurgy Research Institute,  
 Central South University, Changsha 410083, P.R.China)

**[Abstract]** The rheological behaviors of feedstocks for powder extrusion molding, in the temperature range of 40 ~ 80 °C and the Newton shear rate  $\gamma$  of 3 ~ 800  $s^{-1}$ , were studied. The effects of feedstock constitution, shear rate and temperature on apparent viscosity, shear stress and active energy were investigated. The viscose-flow active energy of PEM feedstocks is 15.89 ~ 90.77 kJ/mol. Based on this research, the PEM technical parameters have optimized.

**[Key words]** powder extrusion molding; feedstock; rheological property; apparent viscosity

**[CLC number]** TF1 24.34; TF1 25.3

**[Document code]** A

### 1 INTRODUCTION

With its fast development and wide application, powder extrusion molding (PEM) has become one of the most primary methods in powder metallurgy field which can be used to manufacture the tubes, rods and other shapes of cemented carbide, high-density alloy, other metals and alloys<sup>[1,2]</sup>. The technical hard-core include binder design and fabrication<sup>[3~6]</sup>, rheological measurement, process control<sup>[7,8]</sup> and debinding<sup>[4,5,9~11]</sup>. The feedstocks for PEM are made of binder and powders. Adding the binder in the feedstocks makes it easy to mold. So it is very important to study rheological behaviors of the feedstocks with different binder addition.

In this paper, several kinds of binder and feedstock are designed and manufactured. The effective method for controlling the extrusion quality and improving the production efficiency are analyzed.

### 2 EXPERIMENTAL

The binders b1, b2, and b3<sup>[7,9]</sup> were manufactured by melting-out combined with solvent dissolving. The powders with composite of WC 92% and Co 8% (mass fraction) (named YG8) were used. The YG8 powders and binder were mixed and plasticized in BRAEBENDER tester. In the feedstocks (named bp1, bp2 and bp3, corresponding to binders b1, b2 and b3 respectively), the contents of YG8 powders were 95.3%, and the contents of binder were 4.7% (mass fraction). The feedstock homogeneity was estimated by the torque-time curves. After about ten minutes' iso-torque procedure, it is considered that the binder and powders were mixed evenly.

The rheological characteristics of feedstocks were measured by means of MPT (Monsanto Processability

Tester) in the temperature range of 40 ~ 80 °C and the Newton shearing rates  $\gamma$  of 3 ~ 800  $s^{-1}$ . The MPT is one type capillary with diameter of 0.145 cm, length of 2.90 cm,  $H/D$  ratio of 20.

### 3 RESULTS AND DISCUSSION

The experimental results are listed in Table 1.

The rheological behaviors of PEM feedstocks can be expressed by shear stress:

$$\tau = k \gamma^n \quad (1)$$

where  $\gamma$  is Newton shear rate,  $k$  and  $n$  are material functions. Here, apparent viscosity,  $\eta_a$ , is defined as

$$\eta_a = k \cdot \gamma^{n-1} \quad (2)$$

Then

$$\tau = \eta_a \cdot \gamma \quad (3)$$

Fig. 1 shows shear stress—shear rate ( $\tau$ — $\gamma$ ) curves of the three kinds of feedstocks. The feedstocks can be considered as pseudo-plasticity fluids, with non-Newton index  $n < 1$ . In the range of experimental temperatures and shear rates, the shear stress increases with increasing of shear rate, but decreases with increasing of temperature. The technical parameters can be optimized by suitable controlling the shear rate ( $\gamma$ ) and temperature ( $T$ ), and at the same time considering the influence of  $\gamma$  and  $T$  on  $\eta_a$ . Then the extrusion molding green-bodies with good quality can be successfully manufactured.

Fig. 2 shows the relations between  $\eta_a$  and non-Newton shear rate,  $\gamma$ . The  $\eta_a$ — $\gamma$  curves can more sensitively show the non-Newton characteristics than  $\tau$ — $\gamma$  curves. Apparently, in the experimental temperature ranges, increment of shearing rate can decrease the viscosity of feedstocks and improve their rheological properties; while  $\gamma$  increases to a certain value, increment of  $\gamma$  can not obviously decrease the

① [Foundation item] Project (59634120) supported by the National Natural Science Foundation of China

[Received date] 2000-03-15; [Accepted date] 2000-06-28

value of  $\eta_a$ . So by selecting suitable value of  $\gamma$ ,  $\eta_a$  does not decrease notably, so as to continuously produce extrusion green bodies with good quality.

By analyzing the relationship between  $\eta_a$  and  $T$ , the viscose-flow activation energy,  $E$ , can be calculated by Arrhenius equation:

$$\eta_a = Ae^{E/(RT)} \quad (4)$$

where  $A$  is a constant,  $R$  is general gas constant,  $T$  is absolute temperature.

From Eqn.(4),

$$\lg \eta_a = \lg A + E/(2.303 RT) \quad (5)$$

The active energy of the three types of feedstocks are listed in Table 2. In Table 2,  $R_L$  is the correlative coefficient whose value is close to 1.

**Table 1** Shear stress, apparent viscosity and non-Newton index of feedstocks

| Feedstock | $T/ K$ | Shear rate, $\gamma/s^{-1}$ | Shear stress, $\tau/ Pa$ | Apparent viscosity, $\eta_a/(Pa\cdot s)$ | Non-Newton index, $n$ |
|-----------|--------|-----------------------------|--------------------------|------------------------------------------|-----------------------|
| 323       | 323    | 3.652                       | 29 308.3                 | 7 291.1                                  | 0.7127                |
|           |        | 36.52                       | 153 436                  | 3 848.2                                  | 0.7313                |
|           |        | 365.2                       | 710 288                  | 1 574.8                                  | 0.5154                |
|           |        | 730.4                       | 982 680                  | 1 025.5                                  | 0.4479                |
| bp1       | 333    | 3.652                       | 12 930.4                 | 2 547.3                                  | 0.3906                |
|           |        | 36.52                       | 34 480.4                 | 753.30                                   | 0.4966                |
|           |        | 365.2                       | 137 920                  | 342.21                                   | 0.7069                |
|           |        | 730.4                       | 228 430                  | 287.32                                   | 0.7384                |
| 343       | 343    | 3.652                       | 9 482.58                 | 1 751.5                                  | 0.3412                |
|           |        | 36.52                       | 24 136.8                 | 542.84                                   | 0.5347                |
|           |        | 365.2                       | 107 750                  | 264.81                                   | 0.6864                |
|           |        | 730.4                       | 172 400                  | 210.57                                   | 0.6739                |
| 313       | 313    | 3.652                       | 68 098.6                 | 5 560.9                                  | 0.09836               |
|           |        | 36.52                       | 86 200.4                 | 784.07                                   | 0.1106                |
|           |        | 365.2                       | 181 020                  | 454.36                                   | 0.7331                |
|           |        | 730.4                       | 327 560                  | 438.55                                   | 0.9168                |
| 323       | 323    | 3.652                       | 51 720.5                 | 3 804.4                                  | 0.06306               |
|           |        | 36.52                       | 64 650.8                 | 780.29                                   | 0.1646                |
|           |        | 365.2                       | 137 920                  | 314.92                                   | 0.5564                |
|           |        | 730.4                       | 211 190                  | 254.03                                   | 0.6438                |
| bp2       | 333    | 3.652                       | 25 860.3                 | 3 603.5                                  | 0.02057               |
|           |        | 36.52                       | 41 376.5                 | 568.00                                   | 0.2009                |
|           |        | 365.2                       | 86 200.0                 | 197.20                                   | 0.5593                |
|           |        | 730.4                       | 133 610                  | 162.78                                   | 0.6687                |
| 343       | 343    | 3.652                       | 21 550.8                 | 1 680.9                                  | 0.09055               |
|           |        | 36.52                       | 30 170.8                 | 479.85                                   | 0.2573                |
|           |        | 365.2                       | 81 890.3                 | 194.41                                   | 0.6196                |
|           |        | 730.4                       | 129 300                  | 158.29                                   | 0.6786                |
| 353       | 353    | 3.652                       | 8 620.49                 | 1 696.9                                  | 0.3899                |
|           |        | 36.52                       | 21 550.3                 | 435.02                                   | 0.4139                |
|           |        | 365.2                       | 62 064.0                 | 138.75                                   | 0.5265                |
|           |        | 730.4                       | 90 510.0                 | 103.10                                   | 0.5532                |
| 313       | 313    | 3.652                       | 275 840                  | 40 128                                   | 0.2207                |
|           |        | 36.52                       | 465 480                  | 7 117.4                                  | 0.2402                |
|           |        | 365.2                       | 827 520                  | 1 294.5                                  | 0.2498                |
|           |        | 730.4                       | 982 680                  | 763.46                                   | 0.2469                |
| 323       | 323    | 3.652                       | 51 720.4                 | 5 169.6                                  | 0.1256                |
|           |        | 36.52                       | 69 822.0                 | 752.90                                   | 0.1397                |
|           |        | 365.2                       | 136 196                  | 315.20                                   | 0.5770                |
|           |        | 730.4                       | 215 500                  | 267.05                                   | 0.7045                |
| bp3       | 333    | 3.652                       | 35 342.2                 | 5 041.9                                  | 0.2137                |
|           |        | 36.52                       | 56 030.8                 | 698.59                                   | 0.1728                |
|           |        | 365.2                       | 112 060                  | 262.75                                   | 0.5983                |
|           |        | 730.4                       | 181 020                  | 227.71                                   | 0.7387                |
| 343       | 343    | 3.652                       | 30 170.6                 | 2 229.3                                  | 0.08457               |
|           |        | 36.52                       | 39 652.6                 | 520.17                                   | 0.1869                |
|           |        | 365.2                       | 86 200.0                 | 193.99                                   | 0.5355                |
|           |        | 730.4                       | 129 300                  | 152.61                                   | 0.6897                |

**Table 2** Active energy and corresponding relative coefficient of feedstocks

| Feedstock | $\gamma = 3.652 s^{-1}$ |           | $\gamma = 36.52 s^{-1}$ |           | $\gamma = 365.2 s^{-1}$ |           | $\gamma = 730.2 s^{-1}$ |           |
|-----------|-------------------------|-----------|-------------------------|-----------|-------------------------|-----------|-------------------------|-----------|
|           | $E/(kJ \cdot mol^{-1})$ | $R_L$     |
| bp1       | 65.98                   | 0.968 874 | 90.77                   | 0.939 559 | 82.67                   | 0.931 294 | 73.33                   | 0.949 251 |
| bp2       | 22.31                   | 0.999 526 | 17.62                   | 0.999 606 | 15.26                   | 0.996 283 | 14.88                   | 0.992 112 |
| bp3       | 24.93                   | 0.986 427 | 19.93                   | 0.971 012 | 16.68                   | 0.983 518 | 15.89                   | 0.990 916 |

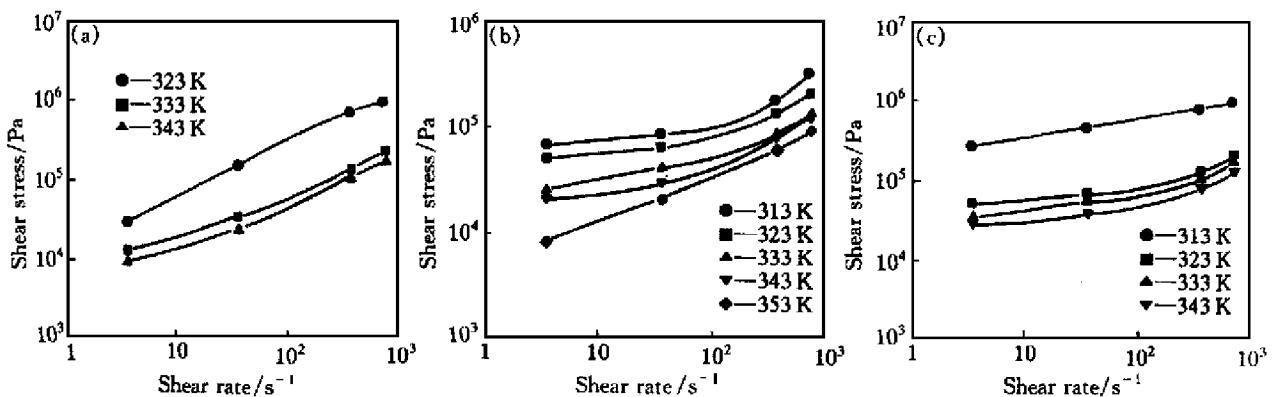



Fig.1  $\tau - \gamma$  curves of feedstocks  
(a) —bp1 ; (b) —bp2 ; (c) —bp3



Fig.2  $\eta_a - \gamma$  curves of feedstocks  
(a) —bp1 ; (b) —bp2 ; (c) —bp3

From Table 2, it is found that the viscose-flow activation energy ( $E$ ) is not very big. This shows the effect of temperature on viscosity is small. Also it is found that the correlative coefficient  $R_L$  of feedstock bp2 is closet to 1, the value of  $E$  is most reliable. In extrusion molding experiments, the feedstock bp2 shows good general properties, which indicates that the binder b2 is the optimal composite under the experimental conditions.

#### 4 CONCLUSIONS

With new binder, the PEM feedstocks with good quality are prepared. The experimental results show that the characteristics of sample bp2 is optimal. By optimizing PEM technical parameters, the extrusion green bodies with good quality can be continuously extruded.

#### [ REFERENCES]

- [1] Friedrichs K A. New technology for the production of carbide rods with helical twisted coolant holds [A]. Proc of 13th Plansee Seminar [C]. 1993. 468.
- [2] Friedrichs I A. New plastification agent for the extrusion molding of sintered carbide rod with cooling channel borings [A]. Proc of 14th Plansee Seminar [C]. 1995.

- [3] Shaw H M and Edirisinghe M J. A model for the diffusion of organic additives during thermolysis of a ceramic body [J]. Philosophical Magazine A, 1995, 72(1) : 267.
- [4] Pinwill I E. Development of temperature-heating rate diagrams for the pyrolytic removal of binder [J]. J Mater Sci, 1992, 27 : 4381.
- [5] German R M. Theory of thermal debinding [J]. Int J Powder Metall, 1987, 23(4) : 237.
- [6] Angermann H H and Biest O V. Low temperature debinding kinetics of two-component model systems [J]. Int J Powder Metall, 1993, 29(3) : 239.
- [7] ZHOU Ji-cheng and HUANG Bai-yun. Study of the rheology of powder extrusion molding (I) [J]. Rare Metal Mater and Eng, (in Chinese), 1998, 27(4) : 202.
- [8] ZHOU Ji-cheng and HUANG Bai-yun. Study of rheology of powder extrusion molding (II) [J], Rare Metal Mater and Eng, (in Chinese), 1998, 27(5) : 267.
- [9] ZHOU Ji-cheng, HUANG Bai-yun, WU En-xi, et al. Thermal debinding of a new binder [J]. Trans Nonferrous Met Soc China, 1997, 7(4) : 107.
- [10] ZHOU Ji-cheng, HUANG Bai-yun, WU En-xi, et al. Rheological and thermal degreasing characteristics of novel formative agent [J]. The Chinese Journal of Non-ferrous Metals, (in Chinese), 1998, 8(4) : 647.
- [11] Moller J C and Lee D. Constitutive behavior of a powder/binder system: molding and thermal debinding [J]. Int J Powder Metall, 1994, 30(1) : 103.

(Edited by YANG Bing)