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[ Abstract] Based on real-time price counting of electric power, an optimization model of time-sharing power for elec-

trolytic zinc process( EZP) was established by means of an incre mental fuzzy neural net work( FNN) , which is adopted to

approximate the relationship of current efficiency, current density and acidity . Penalty function introduced and optimal

objective function reconstructed, a single-loop simulated annealing algorithm( SAA) by using mutation and extending

searching spaces was used to obtain optimal time-sharing power sche me . Industrial practical results show that the whole

system can greatly decrease the power consumption of EZP and increase the time-sharing profits .
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1 INTRODUCTION

In metallurgical industry, electrolytic zinc pro-
cess( EZP) is a great powerconsuming process whose
power consumption accounts for 80 % of total power
consumption of hydro metallurgical process“]. Ac-
cording to real-time price counting policy, power
costs of EZP will be decreased obviously in the event
of electrolysis with low current density in the period
of high price and with high current density in the pe-
riod of low price . However, if the current density is
too high or too low, it will lead to high power con-
sumption or low current efficiency . So it is imperative
to seek optimal time-sharing power sche me that real
time price counting and state of zinc electrolysis are
taken into account .

With the relatively constant
EZP, current efficiency is mainly related to current

te mperature in

density and acidity and their relationship is nonlinear .
Fuzzy neural network (FNN)[2’3], which integrates
the learning ability of neural networks and the hu-
marrlike reasoning ability of the fuzzy logic syste ms
into one framework[4], can arbitrarily approximate
the nonlinear relationship through training multiin-
put/ multi- output process data. So FNN is adopted to

approximate their relationship. Simulated anneal-

ing[S]
which is based on the physical annealing of solids and

,a random searching optimization technique

derives from the Metropolis algorith ml ¢! ,only needs
compute objective function in the process of iterating ,
and overcomes the shortage of conventional optimiza-
tion methods which need differentiate objective func-

tion, so it can be used to optimize such intelligent
model as FNN. In this paper, an single-loop SAA by
using mutation and extending searching spaces is ap-
plied to optimal dispatching system of time-sharing
power for EZP with FNN model . Industrial practical
results suggest that the optimal time-sharing power
sche me brought out large economic profits for EZP .

2 FUZZY NEURAL NET WORK MODEL

2.1 Architecture of FNN
A multrinput- multr output system can al ways be
separated into a group of multi-input-single-output
systems, so a FNN with m inputs { x,, x,, -,
x,,; and one output y is discussed and its network ar
chitecture is shown in Fig.l . The node functions in
every layer are described as follows .

1) Layer1

The node function in this layer is the member
ship function of the linguistic label A,-j and it specifies
the degree to which the given input x; satisfies the
quantified A,-j. Using the Gaussian me mbership func
tion, the node function can be expressed as
S (1

2
are the center aild width of the

Ofj = s (%) = expl -
where Cij and ;
me mbership function of A,-j. The parameter sets { Cij s
g} are referred to as antecedent parameters .

2) Layer 2

Every node in the layer is multiplier of the in-
coming signals whose output represents the firing
strength of a rule. So the node function can be writ-

ten as
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(2)

3) Layer 3

The jth node in the layer calculates the ratio of
the jth rule’ s firing strength to the sum of all rules’
firing strengths:

a)j = a)j/ ij (3)

]

4) Layer 4

Suppose the rule of FNN belongs to Takagi and
Sugeno’ s type[7], the node me mbership in the layer
can be expressed as

4o wf =

0= 9fj =
Wi(Agj+ Ay X + AyXy + o AKX y) (4)
where @ is the output of layer 3 , and the parameter

sets { Agj, Ayj, Ayj, -, amj} referred to as conse-

quent parameters are decided in the process of train-
il‘lg .
5) Layer 5
The node in the layer computes the overall out-
put as the summation of all incoming signals , i.e .
5 _ _
o' = y= 29
]
= 2o 2 ()

] ]
As mentioned above, FNN has the same archi-

tecture as neural network( NN) , so it can be trained
and learned as NN. On the other hand, FNN can
reason as Fuzzy Logic( FL) because its nodes have
definite physical meaning .

2.2 Incremental hybrid learning algorithm
Hybrid learning algorith m'®lis a combination of
the gradient descent method and the least squares es-

Net work architecture of FNN

timate( LSE) . Each epoch of the hybrid learning pro-
cedure is composed of a forward pass and a back ward
pass . In the forward pass, antecedent parameters are
fixed at first and LSE is adopted to calculate conse-
quent parameters. On the contrary, in the backward
pass, consequent parameters are fixed and gradient
descent algorithm is used to update antecedent para m-
eters. For most industrial processes, the plant is al-
ways varying with time , so incre mental hybrid learn-
ing algorithm( IHLA) is proposed to ormline update
these parameters. The following is the summary for
the THLA.

For each input/ output data pair { x,; , X5, -,
Xpm s Yn} s an is calculated through Eqn.(1) to Eqn.
(3) at first. Defined

¢n:[ Yt Y Xul s Y Xua s s Y Xpms ey
T T o T T
L s CuLXnt s L Xm2 , ey a)annm] s
Op=1 a0, ay, Ay, -, G, Aoz, A2, g,
T
@, Ao, AL, A2L, amL]

where L is the number of fuzzy rule, Eqn.(5) is

re written as

L
Yn= Duluf; = A0, (6)
=1
SO conseque]nt parameters @, can be real-time updated
according to
0= 0u1 + S, yn- P00 1)
1 Su1 %S0 (7)
=S s,
where S, is often called covariance matrix , its ini-
tial value Sy = d, where pis a positive large number
and I is the identity matrix of dimension of ( m +1)
Lx (m+1) L, Ais the forgetting factor whose value
is between 0 and 1 . Based on the error function
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1 N2
E= > (yn- y (8)
where /y\n is gained through substituting the value of
0, to Eqn.(6) , antecedent parameters { Cij s Um-j}
are back-propagating updated by
- N
Cuij = Cu-1yij *+ 2.0 “j(yn - yn)
Y 7
(fi- yn) (Xpi = Cnnyip)/ Tn-1yijs
- N
%=@mmw2ﬂ%mM—w% (9)
(fi- yn) (X - C(n-l)ij)z/ O?n-l)ij
nis learning rate . In the learning procedure R

nis updated according to the following two heuristic
[8].

where

rule

1) If the error measure undergoes four consecu
tive reductions , pis increased by 10 % ;

2) If the error measure undergoes two consecu
tive combinations of one increase and one reduction,
nis decreased by 10 % .

The number of me mbership functions in the I H-
LA is determined by the
method *7 .

subtractive clustering

2.3 Simulation

Process data of EZP in a s melting works suggest
that the relationship among current efficiency, cur
rent density and acidity is nonlinear. So IHLA is ap-
plied to approximate their relation, where current
density and acidity are taken as the model input vari-
ables and current efficiency as the output variable .
Approximating results is shown in Fig .2 .

In Fig.2(a) , the dots present the desired output
and accordingly the solid line presents the model out-
put gained by the way of FNN. In Fig.2(b), the
maximal FNN error is less than 2 % and the root
mean square error of all data is only 0.3 % . So it can
be concluded that FNN model of current efficiency
has good fitting precision .

3 OPTIMIZATION MODEL

At present, power price counting policy in Hu-
nan province is based on 4 periods . In different peri
ods , the prices of electric power are quite different .

™)
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In order to keep the daily direct-current power cost be
the lowest on condition that the quality and quantity
of zinc meet require ments of production, the optimal
current densities in four different periods are sought
by an optimal dispatching system( ODS) . The objec
tive function of the optimization model can be ex-
pressed as follows :

4
Q= Zpihi

i=1
that is , mini mize

Q= 2(piViJiStim)

where

(10)

(11)

pi 18 the time-sharing power price , yuan/
k Wh; h; is the power consumption in the ith period,
k Wh; V;is the bath voltage , V; J; is current densi-
ty, A/ m? ; S = 1, X S is the area that current pass-
es, m?; Spis area of a negative plate, m?; and 1, is
the negative plate number of a bath ; 7, is the number
of bath; t;is the time of the ith period, h.
According to the practical production situation of
a smelting works in Hunan province , the relationship
bet ween bath voltage and current density is shown as

following ,
Vi=ag+ a]; (12)
where ay, a, are polynomial coefficients .

To ensure the quality and quantity of products,
objective function should be subject to the following
constraints .

1) Constraint of daily output

4 4
G= .G = D.qliStimyg = C (13)
i=1 i=1

where g is electroche mical equivalent of zinc, qg=
1.2202 g/( A*h); Cis the desired daily output of
zinc, t. The current efficiency is related to the acidity
of electrolyte and the current density J;. Their rela-
tionship can be obtained by virtue of FNN above.
The formula can be expressed as
n = fan(J;, 7,)
where 7, is the acidity of electrolyte .

(14)

2) Constraint of the product quality and techno-
logical conditions

(b)

o 22 40 &
Data point

Fig.2 Approximating results of comparative curve of model output with
desired output (a) and error curve of desired output and model output (b)
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KT < 15 1
]mm \]zl\Imax o ( . ) Z,k — Sigl’l( ui) Tk( i l) ;
where [, is the allowed minimum current density | u;|
of EZP to avoid dissolving zinc cathodes at too low i=1,2, ..., n (18)

current density ; ], is the allowed maximum current
density of EZP, which depends on capacity of cooling
tower and maximum of power, etc.

So, the optimization model of time-sharing pow-
er system for EZP can be simplified as follows

min Q= min 2CLVilD)

i=
Vi=ag+ a J;,

= fl’ll’l(]i, re)/ (]6)
S
’ Zbi]ifl = C,
i=1

]min<]i<]max
li = P,-St,-nb; bi = qtiSnb; i =l,2,3,

where
4.

4 SIMULATED ANNEALING ALGORITHM

The convergent rate of SAA is mainly improved
by virtue of constructing a new refresh function of an-
nealing te mperature( RFAT) such as the RFAT of an
SAA®) that the annealing temperature is inversely
proportional to mth power of annealing time . But be-
cause the algorithm can’ t give a good solution to the
situation that the search procedure is probably long
time trapped in a local point and unable to jump out,
the reliability and satisfactory computational efficien-
cy of finding global solution can’ t be ensured. So a
singleloop SAA by using mutation and extending
searching spaces is presented to solve the problem .
The following is the summary for the proposed SAA
which is going to be introduced in another paper in
detail .

As for the global optimization problem as
mir}lf( x) , the proposed SAA is realized on the fol-
x€ R

lowing steps :

1) Step 1

Give the initial solution x° € R" and initial an
nealing temperature T,, define maximum iterative
times k., time mutational proportion P, as well as
the later improved parameters k, and a, calculate f
(x) and let X" = x", Xpn= 2", Fmin = f( ), k
=0;

2) Step 2

According to the given probability function
. n i/ ™
rezy o= 1 e o e

(17)

where  ZFis the generated kth random vector,Zk =
(Zt, 73,
perature , T, >0 .

.., Z% ,and Tyis the kth annealing te m-

Random vector Zis generated according to

where u; , up, .-, u,is a group of pairwise inde-
pendent random vectors uniformly distributed in [ -
1,117, sign(*) is signum function, T} is present an-
nealing te mperature and m is a given constant, m >
1.

Generate a new heuristic point Y= x+ Z* by
using present iterative point X*and random vector Z¥
and calculate f( Yh) ;

3) Step 3

Generate a random number ¢ uniformly dis-
tributed in [ 0,1 ], and calculate the probability P,
( Yk| X, Ty) of accepting Y*at the present given it
erative point X" and te mperature T, i.e.

P Y X', Ty =

k k
min{1 , CXP(M)-TkﬂLl)} )

If 6§<P,( Y X, Ty) ,then X' = Y, or else
X1 = X* . If the time that the value X' keeps un-
changed continuously exceeds k,x P, , then X =
Y* ;

4) Step 4

Calculate iterative times k,if k is the multiple of
ky ,then reassign initial annealing te mperature T, ac-

cording to
To = aT, (19)
5) Step 5

If XYY < foin, then Xpp = X500 £ = f
( Xk”) . If iterative terminal conditions are satisfied,
then stop searching procedure and take X, as global
optimal solution, else generate a new temperature
T+ according to given RFAT

Tiey = To/ k™, k=1,2, .. (20)
where T, is initial annealing te mperature , k is an-
nealing iterative times and m is the same as Eqn.
(18) .

let k=k+1,and go to Step 2.

Considering that optimization model of time
sharing power for EZP comprises equation constraint
and inequality constraint, it must be transformed in
term of the following methods at first.

1) Penalty function introduced and the equation
constraint substituted into objective function of the
optimization model, the objection function is rewrit-
ten as

4
/C\Q = Zli Vili +
i=1 .
M C- b Jifnn(J;, 7,)] (21)
i=1
where M is a penalty factor and its value is a posi-

tive large number.
2) The new heuristic point ' generated in Step
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2 is forced to satisfy the inequality constraint accord-
ing to the formula

Yk =
]max - ( Ylk - ]max) mOd( ]max - ]min) 4
Ylk > ]max ;
vk

22
]min < sz < ]max; ( )

]min + (Imin - sz) mon( ]max - ]min) s
sz < ]min
After pretreatment, the proposed SAA can be

used to optimize the ODS.
5 INDUSTRIAL APPLICATION

The applicable software of ODS was written
with Visual Basic 5.0. FNN model between current
efficiency and current density on different acidities is
identified and modified on-line . Many functions such
as computation of material balance, optimal calcula-
tion, comparison of optimization efficiency , synthetic
data processing and so on were realized. The ODS of
time-sharing power for EZP with FNN model and
SAA optimization method has been running in a
smelting works since April, 1999 . The practical re-
sults in a week after the system was applied are
shown in Table 1 .

Table 1 Practical results
Expected Practical Current d?‘;sny Power  Time sharing
Date  output  output /(A*m’7)  consumption profits
/t It Ji . Js  Ja /(kWhet"!')  /yuan
May 3, 480 478 .5 200 457 590 590 3027 141143
1999 280 280.6 200 357 596 598 3046
May 4, 480 481 .1 200 457 563 590 3006 183978
1999 280 279.5 200 357 596 598 3030
May 5, 480 480 .0 200 457 563 590 3032 140084
1999 280 281 .1 200 357 596 598 3049
May 6, 480 480.2 200 457 586 590 2990 202066
1999 280 280.1 200 357 601 601 3022
May 7, 490 491 .1 200 483 563 590 3014 143035
1999 280 279 .6 200 357 598 601 3043

Table 1 shows that average direct-current power
consumption per ton zinc is 3030 .5 k Wh/t and time
sharing profits per month is up to 3 464 000 yuan.
Compared with 3 052.2 k Wh/t and 2 777 000 yuan
before , it can be concluded that the electrolysis pro-
cess of zinc runs regularly , power consumption de-
creases and time-sharing profits are notable after the
optimal time-sharing power scheme is applied to ar
range ment of production .

6 CONCLUSIONS

According to real-time price counting policy of
electric power, the time-sharing power optimization
model for EZP is established. And the single-loop
SAA by using mutation and extending searching
spaces is used to optimize the intelligent model with
FNN. The time-sharing power optimal dispatch sys-
tem has been applied to a s melting works . The results
show that the system can greatly decrease the power
consumption per ton zinc and increase the time-shar-
ing profits . So how to apply computer techniques and
advanced control technologies to industrial process to
raise enterprises’ economic profits is an important
project worthy of further research .
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