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[ Abstract] The most important parameters which control the electrolytic process are the concentrations of zinc and sul-

furic acid in the electrolyte . An expert control strategy for determining and tracking the optimal concentrations was pro-

posed, which uses neural net works , rule models and a single-loop control sche me . First, the process was described and the

strategy that features an expert controller and three single-loop controllers was explained. Next, neural networks and rule

models were constructed based on statistical data and e mpirical knowledge on the process . Then, the expert controller for

determining the optimal concentrations was designed through a combination of the neural networks and rule models. The

three single-loop controllers used the PI algorithm to track the optimal concentrations . Finally, the imple mentation of the

proposed strategy were presented. The run results show that the strategy provides not only high-purity metallic zinc, but

also significant economic benefits .
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1 INTRODUCTION

The three basic steps in zinc hydrometallurgy are
leaching , purification and electrolysis . The electrolyt-
ic process involves passing an electrical current
through insoluble electrodes to cause the decomposi-
tion of an aqueous zinc sulfate electrolyte and the de-
position of metallic zinc at the cathode!'!. The control
objective is to recover as much zinc as possible from
the electrolyte as a high-purity product. To achieve
this , it is imperative to maintain the optimal electrol-
ysis conditions and reduce the electrical power con-
sumed .

The electrolytic conditions are affected by many
factors, such as the concentrations of zinc, sulfuric
acid and impurities in the electrolyte ; the current
density at the cathode; and the te mperature of the
electrolyte . For general operation, the most impor
tant factors are the concentrations of zinc and sulfuric
acid, so they must be closely controlled. On the other
hand, a key factor influencing the power consumption
is the current efficiency . Less power is consumed as
the current efficiency increases. Optimizing and
tracking the concentrations of zinc and sulfuric acid,
and improving the current efficiency are primary tasks
in the control . Because of the complexity of the rela-
tionships among the factors, this process is usually
controlled manually. Recently, computer monitoring
and control have been developed to do this job; but
they do not often provide the desired performance be-

cause they are based solely on mathe matical models,
which do not describe the exact relationships among
the key factorst 2+ 31,

Artificial intelligence techniques are steadily ad-
vancing and now constitute a powerful method of con-
trolling complex processes ; and their extensive appli-
cations to engineering proble ms have proven their ef-
fectiveness . Expert systems and neural networks are
two rapidly growing areas. Expert syste ms have been
widely studied and used for process controll*~71,
Such systems use the empirical knowledge of human
experts in a specific domain to solve a problem . Neu-
ral networks are powerful tools for the modeling, i
dentification and controll® 7107 Among them, the
backpropagation network has been used the most in

process control applications[”] .

The electrolysis is a
complex che mical process, and the operating para me-
ters generally have a very narrow range. The rela-
tionships among the factors can be expressed through
a combination of neural networks and rule models
based on statistical data and e mpirical knowledge on
the process . This means that expert syste ms and neu-
ral networks should be able to provide good control of
the electrolytic process .

This paper concerns an expert control strategy
using neural networks for the electrolytic process .
The strategy e mploys four backpropagation networks
and a number of rule models, which express the rela-
tionships among main factors, to determine the opti-
mal concentrations of zinc and sulfuric acid in the
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electrolyte . In addition, it uses a single-loop control
sche me to track the optimal concentrations, so as to
obtain high-purity metallic zinc and improve the cur
rent efficiency as much as possible. This paper first
describes the process and the strategy. Secondly,
backpropagation networks and rule models are con
structed based on statistical data and e mpirical knowl-
edge . Third, an expert controller for determining the
optimal concentrations is designed through a combina-
tion of the backpropagation networks and rule mod
els . Three single-loop controllers using the PI algo
rithm are employed to track the optimal concentra-
tions. Fourth, the imple mentation of the proposed
strategy are presented. Finally , some conclusions are
given.

2 PROCESS DESCRIPTION AND CONTROL
STRATEGY

The electrolytic process that was the subjective
of this study uses low-zinc, low-acid electrolysis tech-
nology. The expert control strategy is proposed for
this process .

2.1 Process description

The process is shown in Fig.1 . The electrolyz
ing cells are arranged in four cascade series , and 240
electrolyzing cells are serially connected in each se-
ries . The electrolyte is added to the cells, and is a
mixture of new electrolyte obtained through the pu-
rification and spent electrolyte returned from the pro-
cess . The flow rate of new electrolyte is controlled by
regulating the speeds of three pumps, while that of
the spent electrolyte is largely fixed . Passing an elec
trical current through the cathodes and anodes of the
cells causes the che mical reaction

27ZnS0, +2H,0=2Zn+2H,S0, + O, (1)
This result in the deposition of metallic zinc at the
cathode, and the formation of sulfuric acid. Part of
the spent electrolyte is cooled and cycled back into the

process , and part is returned to the leaching[l] .

From purification process To leaching process

New electrolyte Spent electolyte

Mixing cell

Electrolyte

Electrolyzing cells
{four cascade series)

Metallic zinc Spent electrolyte

Fig.1 Electrolytic process

To achieve the control objectives , the factors in-
fluencing the electrolysis conditions must be kept
within given ranges. The following constraints must
be satisfied .

1) The concentrations of zinc and sulfuric acid
are within the ranges 45 ~ 60 g/ L and 150 ~ 200 g/
L, respectively , and the ratio of the hydrogen ion
concentration to the zinc ion concentration must be
3.0~3.8.

2) The temperature of the electrolyte is 30 ~
38 C.

3) The current density is 450 ~ 600 A/ m? .

4) The components (Zn, Cu, Cd and Co, etc.)
of the new electrolyte are within the standard allow-
able ranges .

Constraint 2) is satisfied by cooling the spent
electrolyte to be added, and constraints 3) and 4) are
met by two designed syste mst7- 121,

Statistical data and e mpirical knowledge show
that the current efficiency is mainly affected by the
concentrations of zinc and sulfuric acid, the te mpera-
ture and the current density. Therefore, the key
points are to determine the optimal concentrations of
zinc and sulfuric acid for the given te mperature and
current density , and to track the optimal concentra-
tions , so as to satisfy constraint 1) and improve the
current efficiency as much as possible .

2.2 Control strategy

An expert control strategy is proposed to achieve
the control objectives . It uses an expert controller and
three single-loop controllers .

The concentrations of zinc and sulfuric acid are
set by adjusting the flow rate of the new electrolyte
mixed with the spent electrolyte . The expert con-
troller uses a forward chaining strategy based on a
combination of backpropagation networks and rule
models to determine the optimal concentrations of zinc
and sulfuric acid, and to compute the target flow rate
of new electrolyte , so as to yield high- purity metallic
zinc and the maximum current efficiency .

Three single-loop controllers use the PI control
algorithm to track the target flow rate, so as to en-
sure that the actual concentrations of zinc and sulfuric
acid match the optimal values. More specifically , the
three control loops are constructed based on the sin-
gle-loop controllers, inverters, pumps and flow me-
ters . The single-loop controllers regulate the speeds of
three pumps by means of inverters .

3 NEURAL NET WORKS AND RULE MODELS

The relationships among the current efficiency,
the concentrations of zinc and sulfuric acid, the cur
rent density and the temperature have very strong
nonlinearity, which make them difficult to express
using mathe matical models alone . However, they can
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be described by a combination of backpropagation net-
works and rule models based on statistical data and
empirical knowledge , where the rule models are pro-
duction rules of the If Then form .

3.1 Neural networks and training

The te mperature of the electrolyte , xr, is divid
ed into six levels: x; <30, 30 Sx; <32, .., 36 <
xp <38 and x; >38. Four backpropagation net-
works , each with three layers, BP3Ll, BP3L2,
BP3L3 and BP3L4, are constructed for the middle
four levels, 30 S x,<32,32<x,<34,34<x,<
36 and 36 < xp <38, respectively . The input layer,
hidden layer and output layer have three neurons,
nine neurons and one neuron, respectively. The in-
puts of BP3L1 , BP3L2, BP3L3 and BP3L4 are the
current density , the concentrations of zinc and sulfu-
ric acid, which are denoted by x;, xz and xg, re-
spectively, and the output is the current efficiency,
which is denoted by r3. The relationship among the
inputs and the output is defined to be

9
n = Z w; otansig (w; yx;+ w; z X7+

i=1
wi s Xg T b)) + bo (2)
where  w; ;, w; zand w; gare the weights of the
signals from the three neurons of the input layer to
the ith neuron of the hidden layer, respectively , b; is
the bias of the ith neuron of the hidden layer; w; ¢is
the weight of the signal from the ith neuron of the
hidden layer to the neuron of the output layer, bgis
the bias of the neuron of the output layer; and tansig
(*) denotes the tamrsigmoid transfer function, which
has the form
2
1 +e2%

tansig( x) = -1 (2)

and maps the input to the interval ( - 1, DL

Eqn.(2) express the relationship among 7, xj,
xzand xg for a given range of temperatures. The
weights w; ;, w; z, w; sand w; o, and the biases b;
and bg are determined by training the backpropa-
gation network .

To determine these weights and biases, a num-
ber of statistical data are acquired from the process .
These data are classified into four sets for BP3L1 ,
BP3L2, BP3L3 and BP3 L4 according to the te mpera-
ture of the electrolyte , and are used to train the four
backpropagation networks . In the training, the net-
work inputs are x;, xzand xg; the network output
is rz; and the target output is the actual value of the
current efficiency , which is denoted by 7,. The net-
work performance function, 0, is the average of the
squared errors between the network outputs and the

target outputs,i.e.,
N

o=y 2l - m(p1? (4)

=1

where  7( j) and pa( j) are the jth network out-
puts and the jth target outputs, and N is the total
number of the target outputs used in training .

The weights and biases of the net works are itera-
tively adjusted to mini mize Gduring training . A basic

[8.101 s used to de-

backpropagation training algorith m
termine the weights and biases . It e mploys the gradi-
ent of Tto adjust the weights and biases and mini mize
that function. The weights and biases are moved in
the direction of the negative gradient .

The weights and biases of the four backpropa-
gation networks are determined by offline training .
When the environment and operating conditions of
the electrolytic process are changed, it is necessary to

determine the weights and biases afresh .

3.2 Rue Models

In the electrolytic process, there is an interaction
bet ween the concentrations of zinc and sulfuric acid in
the electrolyte because these concentrations are deter-
mined in part by the flow rate of new electrolyte
mixed with the spent electrolyte . This interaction
makes that it is difficult to determine the optimal con-
centrations by using BP3L1, BP3L2, BP3L3 or
BP3 L4 alone . To determine the best concentrations of
zinc and sulfuric acid that can be achieved by adjust-
ing the flow rate of the new electrolyte and that will
yield high purity metallic zinc and the highest possible
current efficiency, we need to construct rule models
based on the empirical knowledge and data. All rule
models use the If Then form!*) and are numbered by
R* .

In constructing rule models, empirical knowl-
edge is acquired mainly from interviews with experi
enced engineers and operators working on the pro-
cess . For instance , an efficient e mpirical method of
determining the optimal concentrations of zinc and
sulfuric acid in the electrolyte is used. More specifi-
cally, the optimal ranges are first determined from
the temperature of the electrolyte and the current
density . Next, an initial concentration of zinc is se-
lected from the optimal range, and the appropriate
target flow rate is computed for the new electrolyte
mixed with the spent electrolyte . Then, the concen-
tration of sulfuric acid is estimated under the assump-
tion that new electrolyte is supplied at the computed
target flow rate. If the estimate is in the optimal
range , the selected concentration of zinc and the esti
mated concentration of sulfuric acid are used as opti-
mal values . If this is not the case , the selection, com-
putation and estimation procedures are repeated until
optimal concentrations are finally obtained .

Assume that x,q is the selected concentration of
zinc, xyg and xgz are the concentrations of zinc in
the new electrolyte and spent electrolyte to be mixed,
respectively, and Qg is the flow rate of the spent
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electrolyte to be mixed. Then the target flow rate of
the new electrolyte is computed by using the follow-
ing e mpirical expression :
Qn= Q 5
N Xnz - kzxzg 0 ()

where  k; is an empirically determined coefficient .

kzxzs- xoz

Under the assumption that new electrolyte is supplied
at the computed target flow rate Qy, the concentra-
tion of sulfuric acid in the electrolyte is estimated by
using the following e mpirical expression :
Yes = OnXns + Qo Xos (6)

ks( Qn+ Qo)

where  xgg is the estimated concentration of sulfuric

acid, xyg and xpg are the concentrations of sulfuric
acid in the new electrolyte and spent electrolyte to be
mixed, and kg is an empirically determined coeffi-
cient .

Rule models are used to select the backpropa-
gation network , determine the optimal ranges of the
concentrations , select the initial concentration of zinc
from the optimal range , and adjust the concentration
of zinc in the optimal range . Table 1 shows some typ-
ical rule models used to determine the optimal concen-
trations of zinc and sulfuric acid, where Uy and Ug
are the optimal ranges of the concentrations of zinc
and sulfuric acid; Xz, and xg,, are the optimal con
centrations of zinc and sulfuric acid; Qe is the tar
get flow rate of new electrolyte ; and Axzis an e mpir
ically determined value .

4 DESIGN OF EXPERT CONTROLLER

An expert controller was designed to determine
the optimal concentrations of zinc and sulfuric acid in
the electrolyte , and the corresponding target flow rate
of new electrolyte . It uses a reasoning strategy based
on forward chaining and a combination of the con-
structed backpropagation net works and rule models .

4.1 Structure of expert controller
The expert controller consists of a characteris-

tics-capturing mechanism, a knowledge base, a

database , an inference engine , and a mamr machine in-
terface .

The characteristics-capturing mechanism handles
process data to obtain data on characteristics . These
data are used by the database, knowledge base and
inference engine .

The knowledge base stores the backpropagation
algorithms , rule models , e mpirical data and operating
laws for the process, calculation laws, etc. The
database stores the quality require ments, measured
data and statistical data on the process, reasoning re-
sults from the inference engine , etc.

The inference engine gets the e mpirical knowl-
edge and data from the knowledge base and database ,
and uses a reasoning strategy based on forward chain-
ing[4] and a combination of the backpropagation net-
works and rule models to determine the optimal con-
centrations of zinc and sulfuric acid, and the corre-
sponding target flow rate of new electrolyte , so as to
yield high-purity zinc and the maximum current effi-
ciency . The man machine interface is used to edit and
modify the knowledge base, and to display and print
the results , etc.

4.2 Algorithm for determining optimal concentra-
tions

A flow chart of the reasoning strategy used in
the expert controller is shown in Fig .2 . The reason-
ing strategy is imple mented in an algorithm . The al-
gorithm is used to determine the optimal concentra-
tions and compute the target flow rate as follows .

Step 1 : Collect the te mperature x;, the current
density x;, the concentrations xyz, Xon, Xng and
Xos, and the flow rate Q.

Step 2 : Obtain data on the characteristics of the
te mperature x; by characteristics-capturing, and fire
a rule model such as REY to select the corresponding
backpropagation network . o

__ Step 3: Determine the optimal ranges Uz and
Ug of the concentrations of zinc and sulfuric acid by
computing the current efficiency based on the selected
network , as so to yield the maximum current efficienr

Table 1 Some typical rule models for determining optimal concentrations

Number If Then
RECI 34 < X, <36 Use BP3L3 to determlnf: U,
and Ug, and select x,5in U,
REC? Xz € Uy, xgs> max( Ug) and x5 #Z max( Uy) Xy = Xzs+ AXy
REC xzs € Uy, xgs < min( Ug) and x5 Z min( Uy) Xzs = Xzs- AXg
- _ Use corresponding backpropagation network to
EC4 = >
S ¥zs = max( Uyp) and xgs > max( Us) dete mine Uy and Ug and select x,5in U, again
NP AP Use corresponding backpropagation network to
ECS -
R ¥zs = min( Uz) and xgs > min( Us) detemine Uy and Ugand select x,5in U, , again
RE® Xzs € Uz and xgg € Us Xzopt = Xzs 5 Xsopt = Xss and QNopl = Qn
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Process data

Obtain data on characteristics by characteristics-capturing,
and fire rule models such as RE®?

Determine ﬁz and {7 by back-propagation computation
based on Eqn. (5) 30 83 to yield the maxigum
current efficiency, and select x,; form Up

estimate z ¢ form Eqn. (9)

Compute Qy from Eqn.(5) and

Adjust x2q by rule models such as

i
(Chgck if xeq€ ﬁ's)No—

RE2 and RES iy T,

Yes .
Check if x,s=max(U;)
or xp=min( Lf;) No
1 Yes
Fire rule models auch as
R™* and RES
Execute rule model R

Tgonr Tope A0d Qi
Fig .2

Cy .
’ Step 4 : Set the concentration of zinc to
Xzs =[ max( Uz) + min( Uy) ]/ 2 (7)
Step 5 : Compute the target flow rate Qyof new
electrolyte from expression (5), and estimate the
concentration xgg of sulfuric acid from Eqn.(6) .
Step 6 : Check if xg3€ Ug. If so, execute rule

model RE®

to obtain the optimal concentrations of
zinc and sulfuric acid and the target flow rate of new

electrolyte , and stop this algorithm . If not, go to the

next step . _
__Step 7: Check if xz5 = max( Uz) or Xz = min
( Uy . If so, fire rule models such as RE® and RES

and go to the next step. If not, adjust xzs so that it
is in Uz by rule models such as RE? and RES , and
return to Step 5. o

__ Step 8: Determine the optimal ranges Uz and
Ug of the concentrations of zinc and sulfuric acid by
computing the current efficiency based on the selected
network , so as to yield the highest current efficiency,
and return to Step 4. The optimal concentrations de-
termined in the above algorithm are achieved by
tracking the target flow rate .

5 IMPLEMENTATION OF CONTROL STRATE
GY

The proposed expert control strategy is used to

Flow chart of reasoning using combination of backpropagation net works and rule models

control the electrolytic process in a nonferrous metals
smeltery .

The expert controller was imple mented on an
IPC 610 type computer system , and the three 761 se-
ries single-loop controllers made by Foxboro company
was used to perform single-loop control. The func
tions of the expert controller are imple mented in ap-
plication soft ware packages written in Borland C + +
and 8086-series asse mbly language . The functions of
the three 761 controllers were imple mented by config-
uring the controllers .

Special instruments are used to accurately mea-
sure different kinds of process data. More specifical-
ly , concentrations are measured with an X ray fluo-
rescence analyzer, flow rates with E + H electromag-
netic flow meters, etc.

The results of actual runs are obtained when the
concentrations of the components of the new elec
trolyte used fall within the standard allowable ranges ,
and the te mperature of the electrolyte and the current
density satisfy the constraints given in Section 2.1 .
In this case, the optimal concentrations of zinc and
sulfuric acid in the electrolyte are determined by the
designed expert controller and tracked by the 761
controllers. It makes that the electrolysis conditions
are optimal and the optimal electrolysis conditions are
maintained. The results show that the optimal con-
centrations of zinc and sulfuric acid and the ratio of
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the hydrogen ion concentration to the zinc ion concen-
tration satisfy the constraints given in Section 2.1 .

Statistical data on the electrolytic process shows
not only that high-purity metallic zinc is obtained,
but also that the power consumption for electrolysis is
considerably reduced. Especially, the power con-
sumption per ton of zinc used for recovery is within
3000k Wh.

6 CONCLUSIONS

This paper has describes an expert control strate-
gy using backpropagation networks for the electrolytic
process. The strategy is based on a combination of
backpropagation net works and rule models , and a sin-
gle-loop control scheme. The backpropagation net-
works and rule models that express the complex rela-
tionships among the factors influencing the electroly-
sis conditions and electrical power consumption for
electrolysis are constructed based on statistical data
and e mpirical knowledge . The optimal concentrations
of zinc and sulfuric acid and the target flow rate of
new electrolyte are determined by a reasoning strate-
gy that combines backpropagation networks and rule
models , and uses forward chaining . The optimal elec
trolysis conditions are maintained by tracking the tar
get flow rate of new electrolyte , while the tracking is
imple mented by conventional single-loop control tech-
nique . The proposed strategy provides not only high-
purity metallic zinc, but also significant economic
benefits .
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