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Abstract : TiNi shape me mory alloy thin films were deposited by using a RF magnetron sputtering apparatus . The trans-

formation and shape me mory characteristics of the thin films have been investigated by using DSC and tensile tests. After

aging , perfect shape me mory effect and superelasticity were achieved in TiNi thin films .
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1 INTRODUCTION

The development of micromachines or micro
robots has been a priority in such fields as medicine ,
bioche mistry , se miconductor. However, in order to
drive such micromachines , it is necessary to develop
microactuators . Among the several types of high per
formance materials proposed for fabricating such mi
croactuators , TiNi shape me mory alloy thin films ex-
hibit significant advantages including large deforma-
tion and recovery forces . Therefore , an important de-
mand for the TiNi thin films has been generated in
the field of micromachines, and some efforts have
been made to fabricate TiNi thin films using the sput-

[1-4] " However, such films

ter deposition technique
are so brittle that they will fracture by applied stress ,
hence it is difficult to investigate the shape me mory
characteristics by mechanical testing .

The purpose of the present paper is to clarify the
characteristics of shape memory and superelasticity
including the transformation te mperatures , the strain
associated with both R-phase and martensitic trans-
formations, the stress vs transformation te mperature
relationship and so on by observing deformation be-
havior in aged thin films during cooling and heating
under various constant stresses .

2 EXPERI MENTAL

TiNi thin films were prepared by a RF mag-
netron sputtering method by using a Ti-50 .0 Ni target
of 101 .6 mm diameter. The films were deposited on
glass substrates . Films with different alloy composi-
tions were prepared by putting a number of small Ti
plates put on the TiNi target sequentially , respective-
ly. The Nicontents of the films were determined to
be 49 .8 %, 50.3 %, 51 .2 % and 51 .9 %( mole frac
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tion) , respectively, by electron microprobe analysis .
After re moved from the substrates, the TiNi films
were cut into two shapes of specimen,i.e.,3 mmXx3
mm for DSC( differential scanning calorimetry) and 1
mm X 5 mm (gauge portion) for mechanical tests then
annealed at 973 K for 3 .6 ks followed by aging at 773
K for 3.6 or 36 ks. The Tir49 .8 Ni thin film used in
this experiment was not age-treated, because it did
not show aging effect. Annealing and aging were fol-
lowed by quenching into water. Transformation te m-
peratures were determined by Shimadzu DSC 50 with
a heating and cooling rate of 10 K/ min. Shape memo
ry behavior was characterized by measuring the strain
induced in the film during cooling and heating under a
variety of constant applied stresses between 5 and 470
MPa, and superelasticity behavior was characterized
by measuring stress-strain relationships at different
te mperatures with Shimadzu Autograph DSS-10T-S.

3 RESULTS AND DISCUSSION

Fig .1 shows the martensitic transformation and
its reverse transformation observed by DSC in a Tr
49 . 8Ni film . The peak te mperatures for the forward
and reverse transformations( M" and A") are 332 K
and 361 K, respectively . These te mperatures are al-
most the same as those of similar composition bulk

Specimens[S’(’]

produced by an electron beam melting
method or a radio frequency vacuum induction melt-
ing method, indicating that the contamination effect
was negligible in the film . Other types of transfor ma-
tion processes were also observed in films of different
compositions as shown in Figs .2 and 3. Fig .2 shows
that an age-treated Tr51 .9Ni film reveals two stage
B,-R-M, i.e., the B, ( parent
phase)- R transformation for the first stage and the
R- M( martensite) transformation for the second stage

transformation
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on cooling , but the reverse transformation presents
only the martensite to the parent B, phase upon heat-
ing . Fig.3 shows that an age-treated Ti-51 .2 Ni film
reveals two-stage transformations both on cooling and
heating . These three types of transformation behavior

are the same as those observed in bulk Specimens[”.
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Fig.3 DSC curve of Tr51 .2Ni film

The above data show that the TiNi thin films
formed by sputtering reveal the thermoelastic R-
phase and the martensitic transfor mations . Hence it is
expected that the thin films will show shape me mory
effect'®1

Shape me mory behavior observed in the Tr
51 .2Ni film is shown in Fig .4 . Three straim te mper-
ature curves are shown in the figure ; these were mea-
sured upon a cooling and heating cycle under different

constant stresses, i.e., 150, 320 and 470 MPa, re-
spectively . The curve measured under 150 MPa shows
that on cooling a first shape change appears at R, due
to the R-phase transformation and on further cooling
M, due to the
martensitic transformation. Upon heating , the origi-

a second shape change occurs at

nal specimen shape was recovered due to a twostage
transformation occurring at A, for the first stage and
at R/S for the second stage . The first shape change on
cooling is not sensitive to applied stress, while the
second shape change increases with increasing applied
stress. The secondstage shape change on cooling is
characterized by a large strain and a large thermal
hysteresis ( A - M) . The shape change associated
with the R-phase transformation is characterized by a
small strain and a small te mperature hysteresis ( R/S
- R,) . Therefore , quick response is expected for the
move ment of an actuator using such R-phase trans-
formation .
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Fig .4 Strain vs te mperature curves
of Tr 51 .2Ni film

Relationships between the transformation tem-
peratures ( Ry, M;and A,) and applied stress in TiNi
thin films are shown in Fig .5 . They show linear rela-
tionships . The slope for the reverse martensitic trans-
formation ( A;) is steeper than those for the forward
martensitic transformation ( M) , causing the tem-
perature hysteresis to become narrower in higher
stress region. The slope for the R-phase transforma-
tion is steeper than that for the martensitic transfor
mation . Therefore , the effect of applied stress on the
R, is weaker.

Three types of transformation strains i.e.,
strain ( &) due to the B, R transformation, strain
( &y) due to the R-martensite transformation and
strain ( &) due to the martensite- B, reverse transfor
mation, are plotted as a function of stress in Fig .6 .
They increase with increasing stress. However, the
increasing rate of & is very small when compared
with the other two strains. Besides, the strain &
stops above 150 MPa,

increasing implying that
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